Learn More
BACKGROUND A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models,(More)
BACKGROUND Retinitis pigmentosa (RP) is characterized by progressive night blindness, visual field loss, altered vascular permeability and loss of central vision. Currently there is no effective treatment available except gene replacement therapy has shown promise in a few patients with specific gene defects. There is an urgent need to develop therapies(More)
PURPOSE As a follow-up to previous studies showing that human cortical neural progenitor cells (hNPC(ctx)) can sustain vision for at least 70 days after injection into the subretinal space of Royal College of Surgeons (RCS) rats, the authors examined how functional rescue is preserved over long periods and how this relates to retinal integrity and donor(More)
Assessments of safety and efficacy are crucial before human ESC (hESC) therapies can move into the clinic. Two important early potential hESC applications are the use of retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration and Stargardt disease, an untreatable form of macular dystrophy that leads to early-onset blindness.(More)
There are concomitant morphological and functional changes in the inner retina during the course of photoreceptor degeneration in a range of animal models of retina degeneration and in humans with eye disease. One concern that has been raised is that the changes occurring in the inner retina might compromise attempts to rescue or restore visual input by(More)
Stem cells derived from the human brain and grown as neurospheres (HuCNS-SC) have been shown to be effective in treating central neurodegenerative conditions in a variety of animal models. Human safety data in neurodegenerative disorders are currently being accrued. In the present study, we explored the efficacy of HuCNS-SC in a rodent model of retinal(More)
PURPOSE To study the distribution of the human retinal pigment epithelium (hRPE) cell line ARPE-19 and human Schwann (hSC) cells grafted to the subretinal space of the Royal College of Surgeon (RCS) rat and the relation of graft cell distribution to photoreceptor rescue. METHODS Cell suspensions of both donor types were injected into the subretinal space(More)
We have examined how transplantation of an RPE cell line to the subretinal space of RCS rats affects the distribution of synaptic connectivity markers in the outer plexiform layer of the retina. Using markers of pre- and post-synaptic profiles (bassoon and synaptophysin as presynaptic markers and mGluR6 for postsynaptic profiles) we found that the normal(More)
PURPOSE Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by progressive decline in learning, memory, and executive functions. In addition to cognitive and behavioral deficits, vision disturbances have been reported in early stage of AD, well before the diagnosis is clearly established. To further investigate ocular(More)
PURPOSE To evaluate the efficacy of immunologically compatible Schwann cells transplanted without immunosuppression in the RCS rat retina to preserve vision. METHODS Syngeneic (dystrophic RCS) Schwann cells harvested from sciatic nerves were cultured and transplanted into one eye of dystrophic RCS rats at an early stage of retinal degeneration. Allogeneic(More)