Learn More
Motor proteins of the kinesin superfamily transport intracellular cargo along microtubules. Although different kinesin proteins share 30-50% amino-acid identity in their motor catalytic cores, some move to the plus end of microtubules whereas others travel in the opposite direction. Crystal structures of the catalytic cores of conventional kinesin (a(More)
Posttranslational modifications of histones regulate chromatin structure and gene expression. Histone demethylases, members of a newly emerging transcription-factor family, remove methyl groups from the lysine residues of the histone tails and thereby regulate the transcriptional activity of target genes. JmjC-domain-containing proteins have been predicted(More)
A phosphorylation-initiated mechanism of local protein refolding activates yeast glycogen phosphorylase (GP). Refolding of the phosphorylated amino-terminus was shown to create a hydrophobic cluster that wedges into the subunit interface of the enzyme to trigger activation. The phosphorylated threonine is buried in the allosteric site. The mechanism(More)
T cell recognition of foreign peptide antigen and tolerance to self peptides is key to the proper function of the immune system. Usually, in the thymus T cells that recognize self MHC + self peptides are deleted and those with the potential to recognize self MHC + foreign peptides are selected to mature. However there are exceptions to these rules.(More)
The tumour necrosis factor (TNF) ligand TALL-1 and its cognate receptors, BCMA, TACI and BAFF-R, were recently identified as members of the TNF superfamily, which are essential factors contributing to B-cell maturation. The functional, soluble fragment of TALL-1 (sTALL-1) forms a virus-like assembly for its proper function. Here we determine the crystal(More)
Oxygen-evolving photosynthetic organisms regulate carbon metabolism through a light-dependent redox signalling pathway. Electrons are shuttled from photosystem I by means of ferredoxin (Fdx) to ferredoxin-thioredoxin reductase (FTR), which catalyses the two-electron-reduction of chloroplast thioredoxins (Trxs). These modify target enzyme activities by(More)
The COOH-terminal peptides of pigeon and moth cytochrome c, bound to mouse IE(k), are two of the most thoroughly studied T cell antigens. We have solved the crystal structures of the moth peptide and a weak agonist-antagonist variant of the pigeon peptide bound to IE(k). The moth peptide and all other peptides whose structures have been solved bound to(More)
The expression of virulence determinants in Staphylococcus aureus is controlled by global regulatory loci (e.g., sarA and agr). One of these determinants, protein A (spa), is activated by sarS, which encodes a 250-residue DNA-binding protein. Genetic analysis indicated that the agr locus likely mediates spa repression by suppressing the transcription of(More)
T-cell-mediated hypersensitivity to metal cations is common in humans. How the T cell antigen receptor (TCR) recognizes these cations bound to a major histocompatibility complex (MHC) protein and self-peptide is unknown. Individuals carrying the MHCII allele, HLA-DP2, are at risk for chronic beryllium disease (CBD), a debilitating inflammatory lung(More)
PURPOSE To examine the physiological effects of betaxolol, a beta1-adrenergic receptor blocker commonly used in the treatment of glaucoma, on retinal ganglion cells and to evaluate its potential to elicit responses consistent with a neuroprotective agent against ganglion cell degeneration. METHODS Single-unit extracellular recording, electroretinogram(More)