Learn More
Androgen receptor (AR) plays a central role in prostate cancer, with most tumors responding to androgen deprivation therapies, but the molecular basis for this androgen dependence has not been determined. Androgen [5alpha-dihydrotestosterone (DHT)] stimulation of LNCaP prostate cancer cells, which have constitutive phosphatidylinositol 3-kinase (PI3K)/Akt(More)
Through its transcriptional activities, the proto-oncoprotein c-Jun can regulate cellular proliferation, survival, and differentiation. We have established a novel yeast assay that screens for repressors of c-Jun transcriptional activity. This screen led to the identification of a ubiquitously expressed novel RING zinc finger protein, termed Makorin RING(More)
Kinases can phosphorylate and regulate androgen receptor activity during prostate cancer progression. In particular, we showed that glycogen synthase kinase-3 beta phosphorylates the androgen receptor, thereby inhibiting androgen receptor-driven transcription. Conversely, the glycogen synthase kinase-3 beta inhibitor lithium chloride suppressed the glycogen(More)
Androgens and the androgen receptor (AR) act in cells by modulating gene expression. Through gene microarray studies, we have identified Ets Variant Gene 1 (ETV1) as a novel androgen-regulated gene. Our data demonstrate that ETV1 mRNA and protein are up-regulated in response to ligand-activated AR in androgen-dependent LNCaP cells, but there is no(More)
Androgen receptor (AR) interacts with beta-catenin and can suppress its coactivation of T cell factor 4 (Tcf4) in prostate cancer (PCa) cells. Pin1 is a peptidyl-prolyl cis/trans isomerase that stabilizes beta-catenin by inhibiting its binding to the adenomatous polyposis coli gene product and subsequent glycogen synthase kinase 3beta (GSK-3beta)-dependent(More)
Prostate cancers respond to treatments that suppress androgen receptor (AR) function, with bicalutamide, flutamide, and cyproterone acetate (CPA) being AR antagonists in clinical use. As CPA has substantial agonist activity, it was examined to identify AR coactivator/corepressor interactions that may mediate androgen-stimulated prostate cancer growth. The(More)
Androgens are important for male sexual development, which depend on the cognate receptor, the androgen receptor. The transcriptional activity of the androgen receptor, like other nuclear receptors, is regulated by accessory proteins that can have either positive or negative effects. Through a yeast functional screen, we have identified SUMO-3 as a(More)
Androgen receptor (AR) plays a central role in prostate cancer, with most tumors responding to androgen deprivation therapies, but the molecular basis for this androgen dependence has not been determined. Androgen [5A-dihydrotestos-terone (DHT)] stimulation of LNCaP prostate cancer cells, which have constitutive phosphatidylinositol 3-kinase (PI3K)/ Akt(More)
The optical characteristics of chromophoric dissolved organic matter (CDOM) were determined in rain samples collected in Xiamen Island, during a rainy season in 2007, using fluorescence excitation-emission matrix spectroscopy associated with UV-Vis absorbance spectra. Results showed that the absorbance spectra of CDOM in rain samples decreased exponentially(More)
Cellular changes that affect the androgen receptor (AR) can cause prostate cancer to transition from androgen dependent to androgen independent, which is usually lethal. One common change in prostate tumors is overexpression of the AR, which has been shown to lead to androgen-independent growth of prostate cancer cells. This led us to hypothesize that(More)