Shao-Ping Lu

Learn More
We present a video editing technique based on changing the timelines of individual objects in video, which leaves them in their original places but puts them at different times. This allows the production of object-level slow motion effects, fast motion effects, or even time reversal. This is more flexible than simply applying such effects to whole frames,(More)
In this paper, we present a video coding scheme which applies the technique of visual saliency computation to adjust image fidelity before compression. To extract visually salient features, we construct a spatio-temporal saliency map by analyzing the video using a combined bottom-up and top-down visual saliency model. We then use an extended bilateral(More)
Polysaccharides were extracted from Lycium barbarum fruits in this work. Fourier transform infrared spectroscopy (FT-IR) and high-performance liquid chromatography (HPLC) have been employed to characterize this polysaccharides in the present study. The results of chemical composition indicated that the L. barbarum polysaccharides were composed of two kinds(More)
When compared to conventional 2-D video, multiview video can significantly enhance the visual 3-D experience in 3-D applications by offering horizontal parallax. However, when processing images originating from different views, it is common that the colors between the different cameras are not well-calibrated. To solve this problem, a novel energy(More)
Depth-based view synthesis can produce novel realistic images of a scene by view warping and image inpainting. This paper presents a depth-based view synthesis approach performing pixel-level image inpainting. The proposed approach provides great flexibility in pixel manipulation and prevents random effects in texture propagation. By analyzing the process(More)
In this paper, we present an interactive static image composition approach, namely color retargeting, to flexibly represent time-varying color editing effect based on time-lapse video sequences. Instead of performing precise image matting or blending techniques, our approach treats the color composition as a pixel-level resampling problem. In order to both(More)