Shao-Kai Jian

Learn More
Ideal Weyl semimetals with all Weyl nodes exactly at the Fermi level and no coexisting trivial Fermi surfaces in the bulk, similar to graphene, could feature deep physics such as exotic transport phenomena induced by the chiral anomaly. Here, we show that HgTe and half-Heusler compounds, under a broad range of in-plane compressive strain, could be materials(More)
Supersymmetry (SUSY) interchanges bosons and fermions but no direct evidence of it has been revealed in nature yet. In this Letter, we observe that fluctuating pair density waves (PDW) consist of two complex order parameters which can be superpartners of the unavoidably doubled Weyl fermions in three-dimensional lattice models. We construct explicit(More)
Weyl semimetals are new states of matter which feature novel Fermi arcs and exotic transport phenomena. Based on first-principles calculations, we report that the chalcopyrites CuTlSe_{2}, AgTlTe_{2}, AuTlTe_{2}, and ZnPbAs_{2} are ideal Weyl semimetals, having largely separated Weyl points (∼0.05  Å^{-1}) and uncovered Fermi arcs that are amenable to(More)
Supersymmetric (SUSY) gauge theories such as the minimal supersymmetric standard model play a fundamental role in modern particle physics, but have not been verified so far in nature. Here, we show that a SUSY gauge theory with dynamical gauge bosons and fermionic gauginos emerges naturally at the pair-density-wave (PDW) quantum phase transition on the(More)
A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order(More)
  • 1