Learn More
Kernelized elastic net regularization (KENReg) is a kernelization of the well-known elastic net regularization (Zou & Hastie, 2005). The kernel in KENReg is not required to be a Mercer kernel since it learns from a kernelized dictionary in the coefficient space. Feng, Yang, Zhao, Lv, and Suykens (2014) showed that KENReg has some nice properties including(More)
Variable selection is popular in high-dimensional data analysis to identify the truly informative variables. Many variable selection methods have been developed under various model assumptions. Whereas success has been widely reported in literature, their performances largely depend on validity of the assumed models, such as the linear or additive models.(More)
As a class of semi-supervised learning methods, manifold regularization learning has recently attracted a lot of attention, due to their great success in exploiting the underlying geometric structures among data. This paper presents a novel semi-supervised approach by combining manifold regularization learning with the idea of multiple kernels, named after(More)
Gradient learning (GL), initially proposed by Mukherjee and Zhou (2006) has been proved to be a powerful tool for conducting variable selection and dimensional reduction simultaneously. This approach presents a nonparametric version of a gradient estimator with positive definite kernels without estimating the true function itself, so that the proposed(More)
  • 1