Shanti J. Aggarwal

Learn More
The purpose of this study was to determine the kinetics of HSP70 expression in response to mild thermal stress. The rationale is to produce a basis for design of optimal heating methods to induce HSP70 expression for preconditioning in cardiac surgery. Bovine aortic endothelial cells were heated at 42 degrees C for 0.5 to 5 hours followed by 37 degrees C(More)
A tryptic peptide (T 19) was isolated from a CNBr fragment of IgG from several representatives of present-day lagomorphs including domestic rabbit, hare, cottontail rabbit and pika. The amino acid sequence of this peptide revealed differences which can be correlated with serological polymorphism associated with group e IgG allotypes. The results confirm(More)
The response of blood vessels to laser irradiation in vivo was studied in the dorsal skin flap glass window chamber model of hamsters. The vasodilatory response of venules was critically dependent on the wavelength of irradiating laser. Relaxation was not produced in arterioles, although it was tried repeatedly. Vessels were irradiated with the 514.5 nm(More)
Thermal preconditioning protocols for cardiac cells were identified which produce elevated HSP70 levels while maintaining high cell viability. Bovine aortic endothelial cells were heated with a water bath at temperatures ranging from 44 to 50 degrees C for periods of 1-30 min. Thermal stimulation protocols were determined which induce HSP70 expression(More)
Human fetal pancreata (HFP) were obtained from dilatation and extraction aborted fetuses of 11-18 weeks' gestation. The pancreas was excised under sterile conditions and kept in culture medium at 4 degrees C, prior to stepwise digestion into 50- to 150-micron fragments. The fragmented pieces were allowed to sediment by gravity, then transferred to tissue(More)
Monocytes were isolated from fresh whole human blood and resuspended in Hanks balanced salt solution; a portion of the cells was mixed with an equal volume of 2M dimethyl sulfoxide (DMSO) to form a 1 M solution. Microliter volumes of cell suspension were placed directly onto a computer-controlled cryostage and cooled to a predetermined subzero temperature.(More)
BACKGROUND The ability of rat pancreatic islets to revascularize after transplantation was examined via in vitro and in vivo imaging of the microvasculature using laser scanning confocal microscopy (LSCM). METHODS Cultured or cryoprocessed islets were transplanted at the renal subcapsular site in rats. At various time intervals after transplantation,(More)