Learn More
In this paper, we present a novel PCR method, termed SiteFinding-PCR, for gene or chromosome walking. The PCR was primed by a SiteFinder at a low temperature, and then the target molecules were amplified exponentially with gene-specific and SiteFinder primers, and screened out by another gene-specific primer and a vector primer. However, non-target(More)
RIG-I is a pattern recognition receptor that senses viral RNA and is crucial for host innate immune defense. Here, we describe a mechanism of RIG-I activation through amidotransferase-mediated deamidation. We show that viral homologs of phosphoribosylformylglycinamidine synthetase (PFAS), although lacking intrinsic enzyme activity, recruit cellular PFAS to(More)
BACKGROUND Hypersensitive cell death, a form of avirulent pathogen-induced programmed cell death (PCD), is one of the most efficient plant innate immunity. However, its regulatory mechanism is poorly understood. AtLSD1 is an important negative regulator of PCD and only two proteins, AtbZIP10 and AtMC1, have been reported to interact with AtLSD1. (More)
BACKGROUND Genetic studies of the Arabidopsis mutant lsd1 highlight the important role of LSD1 in the negative regulation of plant programmed cell death (PCD). Arabidopsis thaliana LSD1 (AtLSD1) contains three LSD1-type zinc finger motifs, which are involved in the protein-protein interaction. METHODOLOGY/PRINCIPAL FINDINGS To further understand the(More)
With the use of in vivo recombination theory, the screening time of yeast one-hybrid system was decreased in the present study. A basic helix-loop-helix (bHLH) protein PsGBF was successfully obtained from a glutathione (GSH)-induced pea cDNA library using the G-box cis-element of the PsCHS1 promoter as a bait. Electrophoretic mobility shift assay (EMSA) and(More)
G protein-coupled receptors (GPCRs) constitute the largest family of proteins that transmit signal to regulate an array of fundamental biological processes. Viruses deploy diverse tactics to hijack and harness intracellular signaling events induced by GPCR. Herpesviruses encode multiple GPCR homologues that are implicated in viral pathogenesis. Cellular(More)
Jasmonates (JAs) regulate various stress responses and development processes in plants, and the JA pathway is tightly controlled. In this study, we report the functional characterization of two novel RING-type ubiquitin ligases, RING DOMAIN LIGASE3 (RGLG3) and RGLG4, in modulating JA signaling. Both RGLG3 and RGLG4 possessed ubiquitin ligase activities and(More)
The mycotoxin fumonisin B1 (FB1) is a strong inducer of programmed cell death (PCD) in plants, but its underlying mechanism remains unclear. Here, we describe two ubiquitin ligases, RING DOMAIN LIGASE3 (RGLG3) and RGLG4, which control FB1-triggered PCD by modulating the jasmonate (JA) signalling pathway in Arabidopsis thaliana. RGLG3 and RGLG4 transcription(More)
NF-κB transcription factors regulate the expression of hundreds of genes primarily involved in immune responses. Signaling events leading to NF-κB activation constitute a major antiviral immune pathway. To replicate and persist within their hosts, viruses have evolved diverse strategies to evade and exploit cellular NF-κB immune signaling cascades for their(More)