Shannon E. Weigum

  • Citations Per Year
Learn More
Melatonin is an important hormone regulating circadian clocks in birds, but the specific cellular sites of action are not completely known. The present study was designed to determine whether astrocytes derived from chick brain contained functional melatonin receptors. Primary cell cultures of diencephalon astrocytes that express glial fibrillary acidic(More)
Monoclonal antibody J1-31 was raised against plaque materials taken from brains of patients who had suffered from multiple sclerosis (MS). Preliminary characterization of the antigen revealed it to be a protein of M(w) 68-70 kDa with both a cytoplasmic and nuclear localization. Here we report the results of isolation and peptide sequencing of the antigen(More)
We report on a novel strategy for the detection of mRNA targets derived from Cryptosporidium parvum oocysts by the use of oligonucleotide-gold nanoparticles. Gold nanoparticles are functionalized with oligonucleotides which are complementary to unique sequences present on the heat shock protein 70 (HSP70) DNA/RNA target. The results indicate that the(More)
Nuclear objects that have in common the property of being recognized by monoclonal antibodies specific for phosphoprotein epitopes and cytoplasmic intermediate filaments (in particular, SMI-31 and RT-97) have been reported in glial and neuronal cells, in situ and in vitro. Since neurofilament and glial filaments are generally considered to be restricted to(More)
Separation of cells and microorganisms from complex biological mixtures is a critical first step in many analytical applications ranging from clinical diagnostics to environmental monitoring for food and waterborne contaminants. Yet, existing techniques for cell separation are plagued by high reagent and/or instrumentation costs that limit their use in many(More)
One of the key elements in point-of-care (POC) diagnostic test instrumentation is the optical system required for signal detection and/or imaging. Many tests which use fluorescence, absorbance, or colorimetric optical signals are under development for management of infectious diseases in resource limited settings, where the overall size and cost of the(More)
This study describes the development and evaluation of an amplification-free molecular assay for detection of Cryptosporidium parvum oocysts. The assay employed a pair of oligonucleotide-functionalized gold nanoparticle (AuNP) probes that were complementary to adjacent sequences on C. parvum 18s rRNA. Hybridization of the probes to the target RNA resulted(More)
  • 1