Learn More
PREMISE OF THE STUDY Just as Sanger sequencing did more than 20 years ago, next-generation sequencing (NGS) is poised to revolutionize plant systematics. By combining multiplexing approaches with NGS throughput, systematists may no longer need to choose between more taxa or more characters. Here we describe a genome skimming (shallow sequencing) approach(More)
Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a(More)
The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily(More)
UNLABELLED PREMISE OF THE STUDY Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. • METHODS AND RESULTS Genome and transcriptome assemblies for milkweed (Asclepias syriaca) were used to design(More)
UNLABELLED PREMISE OF THE STUDY Microsatellite primers were developed in Lupinus luteus L., an emerging temperate protein crop, to investigate genetic diversity, population structure, and to facilitate the generation of better yellow lupine varieties. • METHODS AND RESULTS Thirteen polymorphic primer sets were evaluated in a European and Eastern(More)
Amorpha georgiana (Fabaceae) is an endangered legume species found in longleaf pine savannas in the Southeastern United States. Approximately 900 individuals and 14 populations remain, most of which are concentrated in North Carolina. Eleven microsatellite loci were used to explore genetic diversity, population structure and recent population bottlenecks(More)
Phylogenetics benefits from using a large number of putatively independent nuclear loci and their combination with other sources of information, such as the plastid and mitochondrial genomes. To facilitate the selection of orthologous low-copy nuclear (LCN) loci for phylogenetics in nonmodel organisms, we created an automated and interactive script to(More)
Crown clade Apocynaceae comprise seven primary lineages of lianas, shrubs, and herbs with a diversity of pollen aggregation morphologies including monads, tetrads, and pollinia, making them an ideal group for investigating the evolution and function of pollen packaging. Traditional molecular systematic approaches utilizing small amounts of sequence data(More)
Thirteen polymorphic microsatellite loci were developed for the closely related and reproductively compatible species comprising the A-genome perennial group of the legume genus Glycine. Primers developed from the widespread and isozymically differentiated G. canescens amplified successfully across G. clandestina and four other species within the complex.(More)