Shanlong Wu

  • Citations Per Year
Learn More
The primary restriction on high resolution remote sensing data is the limit observation frequency. Using a network of multiple sensors is an efficient approach to increase the observations in a specific period. This study explores a leaf area index (LAI) inversion method based on a 30 m multi-sensor dataset generated from HJ1/CCD and Landsat8/OLI, from June(More)
This paper uses the refined Generalized Split-Window (GSW) algorithm to derive the land surface temperature (LST) from the data acquired by the Visible and Infrared Radiometer on FengYun 3B (FY-3B/VIRR). The coefficients in the GSW algorithm corresponding to a series of overlapping ranges for the mean emissivity, the atmospheric Water Vapor Content (WVC),(More)
To extract quantitative land information accurately and monitor the air pollution at city scale from moderate to high spatial resolution (MHSR) with a resolution no coarser than 30 m, optical remotely sensed imagery and aerosol parameters, especially aerosol optical depth (AOD), are a necessary step. In this paper, we introduce a new algorithm that can(More)
The GaoFen-4 (GF-4), launched at the end of December 2015, is China’s first high-resolution geostationary optical satellite. A panchromatic and multispectral sensor (PMS) is onboard the GF-4 satellite. Unfortunately, the GF-4 has no onboard calibration assembly, so on-orbit radiometric calibration is required. Like the charge-coupled device (CCD) onboard(More)
The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard(More)
Remote-sensing phenology detection can compensate for deficiencies in field observations and has the advantage of capturing the continuous expression of phenology on a large scale. However, there is some variability in the results of remote-sensing phenology detection derived from different vegetation parameters in satellite time-series data. Since the(More)
  • 1