Learn More
The administration of an efficacious vaccine is the most effective long-term measure to control the genital tract infection caused by Chlamydia trachomatis (Ct) in humans. The current challenge for Ct vaccine development is to develop an effective delivery vehicle for induction of a high level of mucosal T and complementary B cell responses. We evaluated(More)
Cervical cancer caused by infection with high-risk human papillomavirus remains to be the most deadly gynecologic malignancy worldwide. It is well documented that persistent expression of two oncogenes (E6/E7) plays the key roles in cervical cancer. Thus, in vivo detection of the oncoproteins is very important for the diagnosis of the cancer. Recently,(More)
Chlamydia trachomatis (Ct) is the leading cause of sexually transmitted diseases worldwide. There is no safe and effective vaccine to control the spread of Ct. In development of Ct vaccine, selection of appropriate candidate antigens and an effective delivery system may be the main challenges. Multi-epitope of major outer membrane protein (MOMPm) is the(More)
Chlamydia trachomatis is one of the most prevalent sexually transmitted pathogens. Chlamydial major outer membrane protein (MOMP) can induce strong cellular and humoral immune responses in murine models and has been regarded as a potential vaccine candidate. In this report, the amino acid sequence of MOMP was analyzed using computer-assisted techniques to(More)
Chlamydia trachomatis is the leading cause of sexually transmitted infections worldwide. There is currently no commercially available vaccine against C. trachomatis. Major outer membrane protein (MOMP) of C. trachomatis is considered to be an ideal candidate for prophylactic vaccine. We designed a MOMP multi-epitope containing T- and B-cell epitope-rich(More)
We evaluated the immunogenicity and efficacy of a candidate vaccine comprising the major outer membrane protein (MOMP) multi-epitope of Chlamydia trachomatis. A short gene of multi-epitope derived from MOMP containing multiple T- and B-cell epitopes was artificially synthesized. The recombinant plasmid pET32a(+) containing codon optimized MOMP multi-epitope(More)
Human papillomavirus (HPV) major capsid protein L1 is an important vehicle for the delivery of epitopes. To investigate the expression and immunogenicity of hybridized HPV6b L1 containing multiepitope of Epstein-Barr virus (EBV) latency membrane protein 2 (LMP2), a recombinant plasmid pcDNA3.1(+) containing mammalian codon-optimization HPV6b L1 gene and EBV(More)
Epstein-Barr virus (EBV) is prevalent throughout the world and is associated with several malignant diseases in humans. Latent membrane protein 2 (LMP2) of EBV plays a crucial role in the pathogenesis of EBV-associated tumors; therefore, LMP2 has been considered to be a potential immunodiagnostic and immunotherapeutic target. A multi-epitope-based antigen(More)
OBJECTIVE To prepare a prokaryotic expression vector carrying E7 protein of human papillomavirus (HPV) type 16 and a polyclonal antibody against it. METHODS The HPV16 E7 gene was amplified by PCR from the tissue samples of cervical cancer and cloned into the pET21a(+) prokaryotic expression vector. The constructed pET21a(+)/HPV16 E7 recombinant plasmid(More)
We predict in this paper B-cell epitopes of Epstein-Barr virus nuclear antigen-1 (EBNA-1) and analyze the results matched with the related autoantigens sequence of human. We selected EBV-1 standard strain NA-1 amino acid sequence as the basis. We predicted B-cell dominant epitopes of EBNA-1 with the methods of SOPMA, GOR and HNN, combined with the(More)