Shankarjee Krishnamoorthi

Learn More
We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle(More)
The electrocardiogram (ECG) is one of the most significant outputs of a computational model of cardiac electrophysiology because it relates the numerical results to clinical data and is a universal tool for diagnosing heart diseases. One key features of the ECG is the T-wave, which is caused by longitudinal and transmural heterogeneity of the action(More)
We study the numerical accuracy and computational efficiency of alternative formulations of the finite element solution procedure for the monodomain equations of cardiac electrophysiology, focusing on the interaction of spatial quadrature implementations with operator splitting and examining both nodal and Gauss quadrature methods and implementations that(More)
MicroRNAs (miRNAs) are a distinct class of non-coding, small regulatory RNAs which have evolved significantly in generating abiotic stress tolerance across a variety of model plants and crop species. These miRNAs, while undergoing post-transcriptional modifications, have often been found to be linked with epigenetic regulations of stress-responsive gene(More)
With its ever growing popularity, providing Internet based applications tuned towards practical applications is on the rise. Advantages such as no external plugins and additional software, ease of use, updating and maintenance have increased the popularity of web applications. In this work, a web-based application has been developed which can perform size(More)
Bitstream compression is important in reconfigurable system design since it reduces the bit stream size and the memory requirement. It also improves the communication bandwidth and thereby decreases the reconfiguration time in FPGA. Existing research in this field has explored two directions: efficient compression with slow decompression or fast(More)
Quantitative measurement of the material properties (eg, stiffness) of biological tissues is poised to become a powerful diagnostic tool. There are currently several methods in the literature to estimating material stiffness, and we extend this work by formulating a framework that leads to uniquely identified material properties. We design an approach to(More)
An important task in designing a truss structure is to determine the initial configuration of the truss. In the absence of an efficient optimization technique, the selection of initial geometry is based on a trial and error procedure or standard truss configurations or past experiences. In this work, a fully automated algorithm is proposed which can be used(More)
  • 1