Shani Bialik

Learn More
It is not surprising that the demise of a cell is a complex well-controlled process. Apoptosis, the first genetically programmed death process identified, has been extensively studied and its contribution to the pathogenesis of disease well documented. Yet, apoptosis does not function alone to determine a cell's fate. More recently, autophagy, a process in(More)
Death-associated protein kinase (DAPk) and DAPk-related protein kinase (DRP)-1 proteins are Ca+2/calmodulin-regulated Ser/Thr death kinases whose precise roles in programmed cell death are still mostly unknown. In this study, we dissected the subcellular events in which these kinases are involved during cell death. Expression of each of these DAPk subfamily(More)
Death-associated protein kinase (DAPk) is the founding member of a newly classified family of Ser/Thr kinases, whose members not only possess significant homology in their catalytic domains, but also share cell death-associated functions. The realization that DAPk is a tumor suppressor gene, whose expression is lost in multiple tumor types, has spurred a(More)
The tumor suppressor functions of p19(ARF) have been attributed to its ability to induce cell cycle arrest or apoptosis by activating p53 and regulating ribosome biogenesis. Here we describe another cellular function of p19(ARF), involving a short isoform (smARF, short mitochondrial ARF) that localizes to a Proteinase K-resistant compartment of the(More)
Autophagy and apoptosis constitute important determinants of cell fate and engage in a complex interplay in both physiological and pathological settings. The molecular basis of this crosstalk is poorly understood and relies, in part, on "dual-function" proteins that operate in both processes. Here, we identify the essential autophagy protein Atg12 as a(More)
Autophagy is a process by which the cell recycles its components through self-consumption of cellular organelles and bulk cytoplasm. In times of stress, it serves to generate much needed nutrients. When overactivated, however, the orderly destruction of organelles can lead to cell death. At times, autophagic cell death is used as an alternative to apoptosis(More)
Death-associated protein kinase is a calcium/calmodulin serine/threonine kinase, which positively mediates programmed cell death in a variety of systems. Here we addressed its mode of regulation and identified a mechanism that restrains its apoptotic function in growing cells and enables its activation during cell death. It involves autophosphorylation of(More)
Damage to endoplasmic reticulum (ER) homeostasis that cannot be corrected by the unfolded protein response activates cell death. Here, we identified death-associated protein kinase (DAPk) as an important component in the ER stress-induced cell death pathway. DAPk−/− mice are protected from kidney damage caused by injection of the ER stress-inducer(More)
AbstractDAP-kinase (DAPk) is a Ser/Thr kinase that regulates cytoplasmic changes associated with programmed cell death. It is shown here that a GFP–DAPk fusion, which partially localized to actin stress fibers, induced extensive membrane protrusions. This phenotype correlated with changes in myosin-II distribution and with increased phosphorylation of the(More)
Misregulated cell death, which can result in either the excessive, inappropriate elimination of cells, or in the insufficient removal of damaged or malignant cells, has been associated with numerous diseases. Here we discuss an important molecular regulator of cell death, DAP-kinase (DAPk), which presents a promising target for therapeutic intervention. A(More)