Shangzhen Zhou

Learn More
We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer(More)
Editing of the human genome to correct disease-causing mutations is a promising approach for the treatment of genetic disorders. Genome editing improves on simple gene-replacement strategies by effecting in situ correction of a mutant gene, thus restoring normal gene function under the control of endogenous regulatory elements and reducing risks associated(More)
We have previously shown that adeno-associated virus type 2 (AAV2) undergoes anterograde axonal transport in rat and non-human primate brain. We screened other AAV serotypes for axonal transport and found that AAV6 is transported almost exclusively in a retrograde direction and, in the same way as AAV2, it is also neuron-specific in rat brain. Our findings(More)
Mutations were made at 64 positions on the external surface of the adeno-associated virus type 2 (AAV-2) capsid in regions expected to bind antibodies. The 127 mutations included 57 single alanine substitutions, 41 single nonalanine substitutions, 27 multiple mutations, and 2 insertions. Mutants were assayed for capsid synthesis, heparin binding, in vitro(More)
Adeno-associated virus (AAV) vectors are effective gene delivery vehicles mediating long-lasting transgene expression. Data from a clinical trial of AAV2-mediated hepatic transfer of the Factor IX gene (F9) into hemophilia B subjects suggests that CTL responses against AAV capsid can eliminate transduced hepatocytes and prevent long-term F9 expression.(More)
There is considerable interest in the use of adeno-associated virus serotype 9 (AAV9) for neurological gene therapy partly because of its ability to cross the blood-brain barrier to transduce astrocytes and neurons. This raises the possibility that AAV9 might also transduce antigen-presenting cells (APC) in the brain and provoke an adaptive immune response.(More)
Choroideremia (CHM) is an X- linked retinal degeneration that is symptomatic in the 1(st) or 2(nd) decade of life causing nyctalopia and loss of peripheral vision. The disease progresses through mid-life, when most patients become blind. CHM is a favorable target for gene augmentation therapy, as the disease is due to loss of function of a protein necessary(More)
Site-specific genome editing provides a promising approach for achieving long-term, stable therapeutic gene expression. Genome editing has been successfully applied in a variety of preclinical models, generally focused on targeting the diseased locus itself; however, limited targeting efficiency or insufficient expression from the endogenous promoter may(More)
In a clinical study of recombinant adeno-associated virus-2 expressing human factor IX (AAV2-FIX), we detected 2 impediments to long-term gene transfer. First, preexisting anti-AAV neutralizing antibodies (NABs) prevent vector from reaching the target tissue, and second, CD8(+) T-cell responses to hepatocyte-cell surface displayed AAV-capsid-terminated FIX(More)
Hemophilia A, a deficiency of functional coagulation factor VIII (FVIII), is treated via protein replacement therapy. Restoring 1% to 5% of normal blood FVIII activity prevents spontaneous bleeding, making the disease an attractive gene therapy target. Previously, we have demonstrated short-term activity of a liver-specific AAV2 vector expressing canine(More)