Shang-Hsiu Hu

Learn More
A flexible drug delivery device was designed and fabricated using electrophoretic deposition of drug-carrying magnetic core-shell Fe(3)O(4) at SiO(2) nanoparticles onto an electrically conductive flexible PET substrate. The PET substrate was first patterned to a desired layout and subjected to deposition. In doing so, a uniform and nanoporous membrane could(More)
An intelligent magnetic hydrogel (ferrogel) was fabricated by mixing poly(vinyl alcohol) (PVA) hydrogels and Fe3O4 magnetic particles through freezing-thawing cycles. Although the external direct current magnetic field was applied to the ferrogel, the drug was accumulated around the ferrogel, but the accumulated drug was spurt to the environment instantly(More)
Several biocompatible polymers are capable of large responses to small temperature changes around 37ºC. In water, their responses include shrinkage and swelling as well as transitions in wettability. These properties have been harnessed for biomedical applications such as tissue engineering scaffolds and drug delivery carriers. A soft material/hard material(More)
Cocktail therapy by delivering multiple drugs to diseased cells can elicit synergistic therapeutic effects and better modulate the complex cell-signaling network. Besides selection of drug combinations, a difficulty in delivery is how to encapsulate drugs with various solubility into a common vehicle, particularly when both hydrophobic and hydrophilic(More)
Novel dual-functional nanospheres composed of magnetic iron oxide nanoparticles embedded in a thermo-sensitive Pluronic F127 (F127) matrix were successfully synthesized by an in situ coprecipitation process. The nanospheres were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy.(More)
Yolk/shell capsules containing a volume/hydrophobicity transformable core and an ultra-thin silica shell have been prepared. When an external magnetic field induced the temperature, the cores exhibit a significant triggering size shrinkage and the diameter decreases more than 10 times, causing solid shells destruction and physical collapse, leading to drug(More)
A magneto-responsive energy/drug carrier that enhances deep tumor penetration with a porous nano-composite is constructed by using a tumor-targeted lactoferrin (Lf) bio-gate as a cap on mesoporous iron oxide nanoparticles (MIONs). With a large payload of a gas-generated molecule, perfluorohexane (PFH), and a hydrophobic anti-cancer drug, paclitaxel (PTX),(More)
The novel nano-seaurchin structure is characteristic of high-density and well-dispersed gold nanorods in one mesoporous silica nanobead. This nanoplatform provided increased photothermal stability, stable photoacoustic signal and highly efficient hyperthermia effect both in vitro and in vivo, indicating a powerful theranostic modality.
  • 1