Learn More
Maintaining a high concentration of therapeutic agents in the brain is difficult due to the restrictions of the blood-brain barrier (BBB) and rapid removal from blood circulation. To enable controlled drug release and enhance the blood-brain barrier (BBB)-crossing efficiency for brain tumor therapy, a new dual-targeting magnetic polydiacetylene nanocarriers(More)
Quantum-dot-tagged reduced graphene oxide (QD-rGO) nanocomposites (left) internalized into targeted tumor cells display bright fluorescence from the QDs (right); by absorbing NIR radiation incident on the rGO and converting it into heat, they also cause simultaneous cell death and fluorescence reduction (bottom). The nanocomposite is thus capable of tumor(More)
A flexible drug delivery device was designed and fabricated using electrophoretic deposition of drug-carrying magnetic core-shell Fe(3)O(4) at SiO(2) nanoparticles onto an electrically conductive flexible PET substrate. The PET substrate was first patterned to a desired layout and subjected to deposition. In doing so, a uniform and nanoporous membrane could(More)
Compact nanostructures with highly integrated functionalities are of considerable current interest to drug delivery, multimodality imaging, and electronic devices. A key challenge, however, is how to combine individual components together without interfering or sacrificing their original electronic and optical properties. Here, we demonstrate a new class of(More)
An intelligent magnetic hydrogel (ferrogel) was fabricated by mixing poly(vinyl alcohol) (PVA) hydrogels and Fe3O4 magnetic particles through freezing-thawing cycles. Although the external direct current magnetic field was applied to the ferrogel, the drug was accumulated around the ferrogel, but the accumulated drug was spurt to the environment instantly(More)
Recently, magnetic silica-based nanospheres have received great attention and displayed magnificent potential for bioimaging and therapeutic purposes. This study provided a way to accelerate drug release from magnetic-sensitive silica nanospheres by controlled bursting to a therapeutically effective concentration by a high-frequency magnetic field (HFMF).(More)
Cocktail therapy by delivering multiple drugs to diseased cells can elicit synergistic therapeutic effects and better modulate the complex cell-signaling network. Besides selection of drug combinations, a difficulty in delivery is how to encapsulate drugs with various solubility into a common vehicle, particularly when both hydrophobic and hydrophilic(More)
Iron-oxide-containing double emulsion capsules carrying both hydrophilic and hydrophobic therapeutic molecules can deliver drugs and energy on demand in vivo. Magneto-chemotherapy/hyperthermia involves a burst-like release of hydrophilic doxorubicin and hydrophobic paclitaxel, remotely triggered by a high frequency magnetic field, which also releases energy(More)
Core/single-crystal-shell nanospheres are constructed from a poly-(N-vinyl- 2-pyrrolidone) (PVP)-modified silica core with an outer layer of single-crystal iron oxide shell. The nanospheres show outstanding release-and-zero-release characteristics via the addition and removal, respectively, of an external high-frequency magnetic field.
Lactoferrin (Lf)-tethered magnetic double emulsion nanocapsules (Lf-MDCs) are assembled from polyvinyl alcohol (PVA), polyacrylic acid (PAA), and iron oxide (IO) nanoparticles. The core-shell nanostructure of the Lf-MDCs (particle diameters from 100 to 150 nm) can simultaneously accommodate a hydrophilic drug, doxorubicin (Dox), and a hydrophobic drug,(More)