Shane Velan

Learn More
The dorsal marginal zone (DMZ) of the amphibian embryo is a key embryonic region involved in body axis organization and neural induction. Using time-lapse microscopic magnetic resonance imaging (MRI), we follow the pregastrula movements that lead to the formation of the DMZ of the stage 10 Xenopus embryo. 2D and 3D MRI time-lapse series reveal that(More)
The amphibian embryo undergoes radical tissue transformations during blastula and gastrula stages, but live observation of internal morphogenetic events by optical microscopy is not feasible due to the opacity of the early embryo. Here, we report on the use of microscopic magnetic resonance imaging (MRI) to directly follow morphogenetic movements during(More)
Tissue oxygen content is a central parameter in physiology but is difficult to measure. We report a novel procedure for spatial mapping of oxygen by electron paramagnetic resonance (EPR) utilizing a spectral-spatial imaging data set, in which an EPR spectrum is obtained from each image volume element. From this data set, spatial maps corresponding to local(More)
Multi-modality imaging (such as PET-CT) is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET, fused with anatomical images created by MRI, allow the correlation of form with function. Perhaps more exciting than the combination of anatomical MRI with PET, is the melding of(More)
Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype(More)
Mitotic cell division is a highly regulated cellular event in all organisms, but its direct visualization in the vertebrates is limited to animals with transparent embryos. Here, we report on the use of microscopic magnetic resonance imaging (mMRI) to noninvasively observe mitotic cell division of early blastomeres in the optically opaque Xenopus laevis(More)
Metabolic syndrome is a fast growing public health burden for almost all the developed countries and many developing nations. Despite intense efforts from both biomedical and clinical scientists, many fundamental questions regarding its aetiology and development remain unclear, partly due to the lack of suitable imaging technologies to visualize lipid(More)
A novel electron paramagnetic resonance (EPR)-based oxygen mapping procedure (EPROM) is applied to cartilage grown in a single-, hollow-fiber bioreactor (HFBR) system. Chondrocytes harvested from the sterna of 17-day-old chick embryos were inoculated into an HFBR and produced hyaline cartilage over a period of 4 weeks. Tissue oxygen maps were generated(More)
Glucose has multiple functions in the brain, and there is interest in estimating in vivo concentrations rather than merely the uptake determined by nuclear medicine. Glucose can be estimated using magnetic resonance spectroscopy, but measurement is difficult due to its multiple J-coupled proton signals overlapping with other metabolite signals. To minimize(More)