Learn More
A 2-year field microplot experiment was conducted to determine the effects of nitrogen (N) splits on grain yields and the fate of 15N-labelled fertilizer applied to plastic mulched maize (Zea mays L.). Three N split applications at the same rate of 225 kg N hm−2 were performed. The N was applied at the day before sowing, the eight-leaf stage (V8), and the(More)
Nitrogen (N) nutrition is a critical factor in zinc (Zn) acquisition and its allocation into grain of wheat (Triticum aestivum L.). Most of the information collected about this topic is, however, derived from the pot experiments. It is also not known whether optimal N management by decreasing N input could affect the Zn status in grain and plant in the(More)
Understanding the time-course of dry matter (DM) and nitrogen (N) accumulation in terms of yield-trait relationships is essential to simultaneously increase grain yield and synchronize N demand and N supply. We collected 413 data points from 11 field experiments to address patterns of DM and N accumulation with time in relation to grain yield and management(More)
The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) in maize (Zea mays L.) were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain). Field experiments were conducted from 2008(More)
Excessive nitrogen fertiliser application and irrigation in the North China Plain leads to nitrate accumulation in sub-soil and water pollution. HERMES, a dynamic, process-oriented soil-crop model was used to evaluate the effects of improved nitrate and water management on nitrate leaching losses. The model was validated against field studies with a winter(More)
The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) in maize (Zea mays L.) were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain). Field experiments were conducted from 2008(More)
  • 1