Learn More
Members of the HCN channel family generate hyperpolarization-activated cation currents (Ih) that are directly regulated by cAMP and contribute to pacemaker activity in heart and brain. The four HCN isoforms show distinct but overlapping patterns of expression in different tissues. Here, we report that HCN1 and HCN2, isoforms coexpressed in neocortex and(More)
PURPOSE Provide a reproducible method for culturing confluent monolayers of hfRPE cells that exhibit morphology, physiology, polarity, and protein expression patterns similar to native tissue. METHODS Human fetal eyes were dissected on arrival, and RPE cell sheets were mechanically separated from the choroid and cultured in a specifically designed medium(More)
NMDA and AMPA receptors (NMDARs and AMPARs) are colocalized at most excitatory synapses in the CNS. Consequently, both receptor types are activated by a single quantum of transmitter and contribute to miniature and evoked EPSCs. However, in amphibian retina, miniature EPSCs in ganglion cell layer neurons are mediated solely by AMPARs, although both NMDARs(More)
PURPOSE Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or "resting" conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of(More)
MicroRNA (miRNA) expression in fetal human retinal pigment epithelium (hfRPE), retina, and choroid were pairwise compared to determine those miRNAs that are enriched by 10-fold or more in each tissue compared with both of its neighbors. miRs-184, 187, 200a/200b, 204/211, and 221/222 are enriched in hfRPE by 10- to 754-fold compared with neuroretina or(More)
This paper studies the tradeoff between energy consumption and application performance in wireless sensor networks by investigating the interaction between network lifetime maximization and rate allocation problems. To guarantee the individual performance of sensor nodes, we adopt the network utility maximization (NUM) framework to ensure certain fairness(More)
Signal transduction in neurons is a dynamic process, generally thought to be driven by transient changes in the concentration of second messengers. Here we describe a novel regulatory mechanism in which the dynamics of signaling through cyclic AMP are mediated by activity-dependent changes in the affinity of the hyperpolarization-activated, cation(More)
The hyperpolarization-activated cyclic nucleotide-modulated cation (HCN) channels are regulated by both membrane voltage and the binding of cyclic nucleotides to a cytoplasmic, C-terminal cyclic nucleotide-binding domain (CNBD). Here we have addressed the mechanism of this dual regulation for HCN2 channels, which activate with slow kinetics that are(More)
A t-round key-alternating cipher (also called iterated Even-Mansour cipher) can be viewed as an abstraction of AES. It defines a cipher E from t fixed public permutations P1, . . . , Pt : {0, 1} → {0, 1} and a key k = k0‖ · · · ‖kt ∈ {0, 1} by setting Ek(x) = kt⊕Pt(kt−1⊕Pt−1(· · · k1⊕P1(k0⊕ x) · · · )). The indistinguishability of Ek from a truly random(More)
Members of the hyperpolarization-activated cation (HCN) channel family generate HCN currents (I(h)) that are directly regulated by cAMP and contribute to pacemaking activity in heart and brain. The four different HCN isoforms show distinct biophysical properties. In cell-free patches from Xenopus oocytes, the steady-state activation curve of HCN2 channels(More)