Learn More
Clinical and experimental data have established that the leading cause of sporadic female breast cancer is exposure to estrogens, predominantly 17beta-estradiol. Recent advances in the understanding of cell-cycle control mechanisms have been applied to outline the molecular mechanisms through which estrogens regulate the cell cycle in cultured breast cancer(More)
It has been suggested that dietary estrogens neutralize the effect of synthetic chemicals that mimic the effects of estrogen (i.e., xenoestrogens, environmental estrogens). Genistein, a dietary estrogen, inhibits the growth of breast cancer cells at high doses but additional studies have suggested that at low doses, genistein stimulates proliferation of(More)
Zearalenone is a naturally occurring estrogenic contaminant of moldy feeds and is present in high concentrations in dairy products and cereals. Zearalenone was postulated to contribute to the overall estrogen load of women, but the mechanisms of its action are not known. We demonstrated that zearalenone could stimulate the growth of estrogen(More)
Estrogens play a critical role in the etiology of found breast cancer. Estradiol promotes the growth of breast cancer cells in vivo and in vitro. Exogenous estrogens in both the environment and in the human diet increase the growth of breast cancer cells in vitro. A role for xenoestrogens in breast cancer etiology has been proposed but remains(More)
Treatment of MCF 7 cells with the fungal estrogen zearalenone induced cyclin E-associated kinase activity transiently within 9-12 h; total cyclin-dependent kinase (Cdk) 2 activity was elevated for 24 h and beyond. This increased cyclin E/Cdk2 activity was associated with sequestration of the Cdk inhibitor p27 Cdk inhibitor 1B (p27(KIP1)) by newly formed(More)
  • 1