Shaimaa Hussein

  • Citations Per Year
Learn More
To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700(More)
Pkd2L1 (also called TRPP3) is a non-selective cation channel permeable to Ca(2+), Na(+), and K(+) and is activated by Ca(2+). It is also part of an acid-triggered off-response cation channel complex. We previously reported roles of the Pkd2L1 C-terminal fragments in its channel function, but the role of the N terminus remains unclear. Using a yeast(More)
Indirect acute lung injury is associated with high morbidity and mortality. We investigated the link between Rho kinase (ROCK) activation and apoptotic cell death in sepsis induced acute lung injury. This hypothesis was tested by administering a specific, selective inhibitor of ROCK (Y-27632) to rats subjected to cecal ligation and puncture (CLP). Rats were(More)
Polycystin-2 (PC2), encoded by the PKD2 gene, is mutated in ~15% of autosomal dominant polycystic kidney disease. Filamins are actin-binding proteins implicated in scaffolding and membrane stabilization. Here we studied the effects of filamin on PC2 stability using filamin-deficient human melanoma M2, filamin-A (FLNA)-replete A7, HEK293 and IMCD cells(More)
As a transient receptor potential (TRP) superfamily member, polycystic kidney disease 2-like-1 (PKD2L1) is also called TRPP3 and has similar membrane topology as voltage-gated cation channels. PKD2L1 is involved in hedgehog signaling, intestinal development, and sour tasting. PKD2L1 and PKD1L3 form heterotetramers with 3:1 stoichiometry. C-terminal(More)
Transient receptor potential polycystin-3 (TRPP3) is a cation channel activated by calcium and proton and is involved in hedgehog signaling, intestinal development, and sour tasting. How TRPP3 channel function is regulated remains poorly understood. By N-terminal truncation mutations, electrophysiology, and Xenopus oocyte expression, we first identified(More)
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2, and it affects over 10 million people worldwide. It is characterized by cyst formation in the kidney, liver and pancreas. Dosage changes in PKD1/PKD2 are important in ADPKD pathogenesis; therefore, their expression and function has to be strictly regulated. However,(More)
Polycystic kidney disease (PKD) protein 2 Like 1 (PKD2L1), also called transient receptor potential polycystin-3 (TRPP3), regulates Ca(2+)-dependent hedgehog signalling in primary cilia, intestinal development and sour tasting but with an unclear mechanism. PKD2L1 is a Ca(2+)-permeable cation channel that is activated by extracellular Ca(2+) (on-response)(More)
  • 1