Shaifali Bhalla

Learn More
Studies have demonstrated that clonidine (α(2)-adrenoceptor and imidazoline receptor agonist) and BMS182874 (endothelin ET(A) receptor antagonist) potentiate morphine and oxycodone analgesia. Agmatine, an endogenous clonidine-like substance, enhances morphine analgesia. However, its effect on oxycodone analgesia and its interaction with endothelin ET(A)(More)
Several neurotransmitter mechanisms have been proposed to play a role in the actions of morphine. The present study is the first to provide evidence that central endothelin (ET) mechanisms are involved in the modulation of pharmacological actions of morphine. The effect of intracerebroventricular (i.c.v.) administration of endothelin-A (ET(A)) antagonist,(More)
Long-term use of morphine leads to development of antinociceptive tolerance. We provide evidence that central endothelin (ET) mechanisms are involved in development of morphine tolerance. In the present study, we investigated the effect of ET(A) receptor antagonists, BQ123 and BMS182874, on morphine antinociception and tolerance in mice. Mechanism of(More)
The potentiation of oxycodone antinociception by BMS182874 (endothelin-A (ET(A)) receptor antagonist) and agmatine (imidazoline receptor/α(2)-adrenoceptor agonist) is well-documented. It is also known that imidazoline receptors but not α(2)-adrenoceptors are involved in potentiation of oxycodone antinociception by agmatine and BMS182874 in mice. However,(More)
The use of clonidine as a primary and adjuvant analgesic is well-documented. It is known that imidazoline and α2-adrenoceptors are involved in clonidine antinociception. Clonidine also produces antihypertensive actions mediated through the central nervous system. We have reported that centhaquin, a centrally-acting anti-hypertensive drug produces its(More)
Potentiation of opioid analgesia by endothelin-A (ET(A)) receptor antagonist, BMS182874, and imidazoline receptor/α₂-adrenoceptor agonists such as clonidine and agmatine are well known. It is also known that agmatine blocks morphine hyperthermia in rats. However, the effect of agmatine on morphine or oxycodone hypothermia in mice is unknown. The present(More)
Several neurotransmitter mechanisms have been proposed as playing a role in the development of morphine tolerance. We provide evidence for the first time that endothelin antagonists can restore morphine analgesia in morphine-tolerant rats and prevent the development of tolerance to morphine. Studies were carried out in rats and mice treated with implanted(More)
We have previously demonstrated role of central endothelin (ET) receptors in neonatal morphine tolerance. The present study was conducted to investigate involvement of central ET receptors in neonatal rat morphine withdrawal. The aim was to determine activation of G-proteins coupled to opioid and ET receptors by morphine and ET ligands in neonatal rat(More)
BACKGROUND Numerous agents have been demonstrated to potentiate morphine analgesia, including clonidine (alpha(2)-adrenergic and I(1)-imidazoline receptor agonist) and BMS182874 (endothelin-A, ET(A,) receptor antagonist). ET has been shown to affect pharmacological actions of clonidine. The present study was conducted to determine whether(More)