Learn More
G protein-activated K(+) channels (Kir3 or GIRK) are activated by direct interaction with Gβγ. Gα is essential for specific signaling and regulates basal activity of GIRK (I(basal)) and kinetics of the response elicited by activation by G protein-coupled receptors (I(evoked)). These regulations are believed to occur within a GIRK-Gα-Gβγ signaling complex.(More)
Stable complexes among G proteins and effectors are an emerging concept in cell signaling. The prototypical G betagamma effector G protein-activated K(+) channel (GIRK; Kir3) physically interacts with G betagamma but also with G alpha(i/o). Whether and how G alpha(i/o) subunits regulate GIRK in vivo is unclear. We studied triple interactions among GIRK(More)
The G-protein coupled inwardly rectifying potassium (GIRK, or Kir3) channels are important mediators of inhibitory neurotransmission via activation of G-protein coupled receptors (GPCRs). GIRK channels are tetramers comprising combinations of subunits (GIRK1-4), activated by direct binding of the Gβγ subunit of Gi/o proteins. Heterologously expressed(More)
G protein activated K+ channels (GIRK, Kir3) are switched on by direct binding of Gbetagamma following activation of Gi/o proteins via G protein-coupled receptors (GPCRs). Although Galphai subunits do not activate GIRKs, they interact with the channels and regulate the gating pattern of the neuronal heterotetrameric GIRK1/2 channel (composed of GIRK1 and(More)
G protein-activated K+ channels (GIRK) mediate postsynaptic inhibitory effects of neurotransmitters in the atrium and in the brain by coupling to G protein-coupled receptors (GPCRs). In neurotransmitter-dependent GIRK signalling, Gbetagamma is released from the heterotrimeric Galphabetagamma complex upon GPCR activation, activating the channel and(More)
Interdomain interactions between intracellular N and C termini have been described for various K(+) channels, including the voltage-gated Kv2.1, and suggested to affect channel gating. However, no channel regulatory protein directly affecting N/C interactions has been demonstrated. Most Kv2.1 channel interactions with regulatory factors occur at its C(More)
Sleep-deprived individuals appear to have decreased psychological and physical capabilities. Studies have shown how major psychological aspects, such as alertness, complex mental performance, and memory, are strongly affected by sleep deprivation. Military use of psychostimulants dates back many years, especially in units that operate over long hours and(More)
A key issue for understanding exocytosis is elucidating the various protein interactions and the associated conformational transitions underlying soluble N-ethylmeleimide-sensitive factor attachment protein receptor (SNARE) protein assembly. To monitor dynamic changes in syntaxin 1A (Syx) conformation along exocytosis, we constructed a novel fluorescent(More)
G protein-gated K+ channels (GIRK; Kir3), activated by Gβγ subunits derived from Gi/o proteins, regulate heartbeat and neuronal excitability and plasticity. Both neurotransmitter-evoked (Ievoked) and neurotransmitter-independent basal (Ibasal) GIRK activities are physiologically important, but mechanisms of Ibasal and its relation to Ievoked are unclear. We(More)
PURPOSE In military scenarios, there is a need for a system that can enable identification of possible future injury during different activities that are considered to be physically strenuous. The purpose of the present study was to determine whether the use of an octagonal actigraph in conjunction with heart rate (fc) measurements could serve as an(More)