Learn More
In this study a novel memory based particle swarm optimization algorithm is presented. This algorithm utilizes external memory. A set of globally found best and worst positions, along with their parameters are stored in two separate external memories. At each iteration, a coefficient, based on the distance of the current particle to the closest best and(More)
Multi-mode resource and precedence-constrained project scheduling is a well-known challenging real-world optimisation problem. An important variant of the problem requires scheduling of activities for multiple projects considering availability of local and global resources while respecting a range of constraints. This problem has been addressed by a(More)
An apprenticeship-learning-based technique is used as a hyper-heuristic to generate heuristics for an online combinatorial problem. It observes and learns from the actions of a known-expert heuristic on small instances, but has the advantage of producing a general heuristic that works well on other larger instances. Specifically, we generate heuristic(More)
Gesticulation is an essential component of face-to-face communication, and it contributes significantly to the natural and affective perception of human-to-human communication. In this work we investigate a new multimodal analysis framework to model relationships between intonational and gesture phrases using the hidden semi-Markov models (HSMMs). The HSMM(More)
In online bin-packing problems, a policy must be found for assigning items, according their size, immediately upon their arrival to bins with known initial capacities. In previous work of Ozcan and Parkes (GECCO 2011), a policy was represented as a 2-dimensional "matrix" (array) and good matrices were then evolved using a genetic algorithm (GA). Here, we(More)
Biped locomotion for humanoid robots is a challenging problem that has come into prominence in recent years. As the degrees of freedom of a humanoid robot approaches to that of humans, the need for a better, flexible and robust maneuverability becomes inevitable for real or realistic environments. This paper presents new motion types for a humanoid robot in(More)
Hyper-heuristics have emerged as automated high level search methodologies that manage a set of low level heuristics for solving computationally hard problems. A generic selection hyper-heuristic combines heuristic selection and move acceptance methods under an iterative single point-based search framework. At each step, the solution in hand is modified(More)
—Online bin packing requires immediate decisions to be made for placing an incoming item one at a time into bins of fixed capacity without causing any overflow. The goal is to maximise the average bin fullness after placement of a long stream of items. A recent work describes an approach for solving this problem based on a 'policy matrix' representation in(More)
Mutation in a Genetic Algorithm is the key variation operator adjusting the genetic diversity in a population throughout the evolutionary process. Often, a fixed mutation probability is used to perturb the value of a gene. In this study, we describe a novel data science approach to adaptively generate the mutation probability for each locus. The trail of(More)