Learn More
We have studied the dependence of Au-assisted InAs nanowire (NW) growth on InAs(111)B substrates as a function of substrate temperature and input V/III precursor ratio using organometallic vapor-phase epitaxy. Temperature-dependent growth was observed within certain temperature windows that are highly dependent on input V/III ratios. This dependence was(More)
ZnO nanowire (NW) visible-blind UV photodetectors with internal photoconductive gain as high as G approximately 108 have been fabricated and characterized. The photoconduction mechanism in these devices has been elucidated by means of time-resolved measurements spanning a wide temporal domain, from 10-9 to 102 s, revealing the coexistence of fast (tau(More)
We report direct observation of an unexpected anisotropic swelling of Si nanowires during lithiation against either a solid electrolyte with a lithium counter-electrode or a liquid electrolyte with a LiCoO(2) counter-electrode. Such anisotropic expansion is attributed to the interfacial processes of accommodating large volumetric strains at the lithiation(More)
Single-crystal InAs nanowires (NWs) are synthesized using metal-organic chemical vapor deposition (MOCVD) and fabricated into NW field-effect transistors (NWFETs) on a SiO(2)/n(+)-Si substrate with a global n(+)-Si back-gate and sputtered SiO(x)/Au underlap top-gate. For top-gate NWFETs, we have developed a model that allows accurate estimation of(More)
In lithium-ion batteries, the electrochemical reaction between the electrodes and lithium is a critical process that controls the capacity, cyclability and reliability of the battery. Despite intensive study, the atomistic mechanism of the electrochemical reactions occurring in these solid-state electrodes remains unclear. Here, we show that in situ(More)
We demonstrate the ability to precisely control the alignment and placement of large numbers of InAs nanowires from solution onto very narrow, prepatterned electrodes using dielectrophoresis. An understanding of dielectrophoretic behavior associated with such electrode geometries is essential to development of approaches for assembly of intricate nanowire(More)
We report, for the first time, the synthesis of the high-quality p-type ZnO NWs using a simple chemical vapor deposition method, where phosphorus pentoxide has been used as the dopant source. Single-crystal phosphorus doped ZnO NWs have their growth axis along the 001 direction and form perfect vertical arrays on a-sapphire. P-type doping was confirmed by(More)
Conductive atomic force microscopy has been used to characterize distance-dependent electron transport behavior in InAs nanowires grown by metal-organic chemical vapor deposition. Using a conducting diamond-coated tip as a local electrical probe in an atomic force microscope, the resistance of the InAs nanowire has been measured as a function of electron(More)
We have studied the nucleation and growth of InAs nanowires (NWs) on SiO 2 /Si substrates by organometallic vapor-phase epitaxy (OMVPE). Through systematic characterization of InAs NW morphology as a function of V/III precursor ratio, precursor flow rates, growth temperature, growth time, and the presence/absence of Au nanoparticles, a number of significant(More)