Learn More
Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the(More)
Overexpression of the prosurvival Bcl-2 family members (Bcl-2, Bcl-xL, and Mcl-1) is commonly associated with tumor maintenance, progression, and chemoresistance. We previously reported the discovery of ABT-737, a potent, small-molecule Bcl-2 family protein inhibitor. A major limitation of ABT-737 is that it is not orally bioavailable, which would limit(More)
The ability of a cancer cell to avoid apoptosis is crucial to tumorigenesis and can also contribute to chemoresistance. The Bcl-2 family of prosurvival proteins (Bcl-2, Bcl-X(L), Bcl-w, Mcl-1, and A1) plays a key role in these processes. We previously reported the discovery of ABT-263 (navitoclax), a potent small-molecule inhibitor of Bcl-2, Bcl-X(L), and(More)
The BCL-2/BCL-XL/BCL-W inhibitor ABT-263 (navitoclax) has shown promising clinical activity in lymphoid malignancies such as chronic lymphocytic leukemia. However, its efficacy in these settings is limited by thrombocytopenia caused by BCL-XL inhibition. This prompted the generation of the BCL-2-selective inhibitor venetoclax (ABT-199/GDC-0199), which(More)
Characterization of cellular receptors for human, simian, and feline immunodeficiency viruses that are tropic for lymphocytes and macrophages have revealed a common theme of a sequential binding of viral envelope proteins with two coreceptors to mediate virus infection of target cells. In contrast to these dual tropic immunodeficiency viruses, the ungulate(More)
A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical(More)
Human induced pluripotent stem cells have the potential to become an unlimited cell source for cell replacement therapy. The realization of this potential, however, depends on the availability of culture methods that are robust, scalable, and use chemically defined materials. Despite significant advances in hiPSC technologies, the expansion of hiPSCs relies(More)
We have previously reported that serial truncation of the Gag p9 protein of equine infectious anemia virus (EIAV) revealed a progressive loss in replication phenotypes in transfected cells, such that a proviral mutant (E32) expressing the N-terminal 31 amino acids of p9 produced infectious virus particles similarly to parental provirus, while a proviral(More)
While the determination of mechanical properties of a hard scaffold is relatively straightforward, the mechanical testing of a soft tissue scaffold poses significant challenges due in part to its fragility. Here, we report a new approach for characterizing the stiffness and elastic modulus of a soft scaffold through atomic force microscopy (AFM)(More)
Biomedical application of nanotechnology is a rapidly developing area that raises new prospect in the improvement of diagnosis and treatment of human diseases. The ability to incorporate drugs or genes into a functionalized nanoparticle demonstrates a new era in pharmacotherapy for delivering drugs or genes selectively to tissues or cells. It is envisioned(More)