Learn More
Protobothrops flavoviridis (Crotalinae) venom gland phospholipase A(2) (PLA(2)) isozyme genes have evolved in an accelerated manner to acquire diverse physiological activities in their products. For elucidation of the multiplication mechanism of PLA(2) genes, a 25,026 bp genome segment harboring five PLA(2) isozyme genes was obtained from Amami-Oshima P.(More)
Vascular endothelial growth factor (VEGF)/vascular permeability factor induces both angiogenesis and vascular permeability mainly through VEGF receptor (VEGFR)-2 activation. VEGF binds VEGFR-1 as well, but the importance of VEGFR-1 signaling in vascular permeability has been largely neglected. Here, we report the purification and characterization of a novel(More)
Nematodes of the family Heligmonellidae (Heligmosomoidea; Trichostrongylina) reside in the digestive tracts of rodents and lagomorphs. Although this family contains large numbers of genera and species, genetic information on the Heligmonellidae is very limited. We collected and isolated adult worms of three species in Japan that belong to the family(More)
Trimeresurus flavoviridis snakes inhabit the southwestern islands of Japan. A phospholipase A(2) (PLA(2)), named PL-Y, was isolated from Okinawa T. flavoviridis venom and its amino acid sequence was determined from both protein and cDNA. PL-Y was unable to induce edema. In contrast, PLA-B, a PLA(2) from Tokunoshima T. flavoviridis venom, which is different(More)
We have recently shown that crude Trimeresurus flavoviridis (habu snake) venom has a strong capability for activating the human alternative complement system. To identify the active component, the crude venom was fractionated and purified by serial chromatography using Sephadex G-100, CM-cellulose C-52, diethylaminoethyl-Toyopearl 650M, and Butyl-Toyopearl,(More)
OBJECTIVE VEGF-E(NZ7)/PlGF molecules composed of Orf virus-derived VEGF-E(NZ7) and human PlGF1 were previously proven to be potent angiogenic factors stimulating angiogenesis without significant enhancement of vascular leakage and inflammation in vivo. For its future clinical application, there is a pressing need to better understand the beneficial effects(More)
After two decades of study, we draw the conclusion that venom-gland phospholipase A2 (PLA2) isozymes, including PLA2 myotoxins of Crotalinae snakes, have evolved in an accelerated manner to acquire their diverse physiological activities. In this review, we describe how accelerated evolution of venom PLA2 isozymes was discovered. This type of evolution is(More)
Trimeresurus flavoviridis snakes inhabit the southwestern islands of Japan: Amami-Oshima, Tokunoshima and Okinawa. A phospholipase A2 (PLA2) of basic nature (pI 8.5) was isolated from the venom of Amami-Oshima T. flavoviridis. Its amino acid sequence determined by the ordinary procedures was completely in accord with that predicted from the nucleotide(More)
A novel phospholipase A(2) (PLA(2)) gene, named PfPLA 6, was found in a 6,328-bp NIS-1(5')-a segment in the Protobothrops flavoviridis (Habu, Crotalinae) genome. A comparison of the aligned nucleotide sequences of Viperidae (Viperinae and Crotalinae) venom PLA(2) genes, including PfPLA 6, revealed the deletion of a 12-bp segment called S1EX 1 and a 55-bp(More)
Protobothrops (formerly Trimeresurus) elegans, a Crotalinae snake, inhabits Ishigaki and Iriomote islands of the Sakishima Islands of Japan which are located between Okinawa island of Japan and Taiwan. Two phospholipase A(2) (PLA(2)) isozymes were purified to homogeneity from P. elegans venom and sequenced. This led to a discovery of novel PLA(2) isozymes(More)