Seyyed I. Husnain

Learn More
Burkholderia cenocepacia mutants that fail to produce the siderophore ornibactin were obtained following mutagenesis with mini-Tn5Tp. These mutants were shown to be growth restricted under conditions of iron depletion. In eight of the mutants, the transposon had integrated into one of two genes, orbI and orbJ, encoding nonribosomal peptide synthetases. In(More)
The Escherichia coli guaB promoter (P(guaB)) regulates the transcription of two genes, guaB and guaA, that are required for de novo synthesis of GMP, a precursor for the synthesis of guanine nucleoside triphosphates. The activity of P(guaB) is subject to growth rate-dependent control (GRDC). Here we show that the A+T-rich sequence located between positions(More)
The bacterial type IV secretion systems (T4SSs) deliver DNA and protein substrates to bacterial and eukaryotic target cells generally by a mechanism requiring direct contact between donor and target cells. Recent advances in defining the architectures of T4SSs have been made through isolation of machine subassemblies for further biochemical and(More)
The biochemical characterization of the bacterial transcription cycle has been greatly facilitated by the production and characterization of targeted RNA polymerase (RNAP) mutants. Traditionally, RNAP preparations containing mutant subunits have been produced by reconstitution of denatured RNAP subunits, a process that is undesirable for biophysical and(More)
The Escherichia coli guaB promoter (P(guaB)) is responsible for directing transcription of the guaB and guaA genes, which specify the biosynthesis of the nucleotide GMP. P(guaB) is subject to growth rate-dependent control (GRDC) and possesses an UP element that is required for this regulation. In addition, P(guaB) contains a discriminator, three binding(More)
The Escherichia coli guaB promoter (P(guaB)) regulates transcription of two genes, guaB and guaA, that are required for the synthesis of guanosine 5'-monophosphate (GMP), a precursor for the synthesis of guanine nucleoside triphosphates. Transcription from P(guaB) increases as a function of increasing cellular growth rate, and this is referred to as growth(More)
The C-terminal domain of the Escherichia coli RNA polymerase alpha subunit (alphaCTD) plays a key role in transcription initiation at many activator-dependent promoters and at UP element-dependent promoters. This domain is connected to the alpha N-terminal domain (alphaNTD) by an unstructured linker. To investigate the requirements of the alpha inter-domain(More)
  • 1