Seyed M. Moghadas

Learn More
BACKGROUND In the face of an influenza pandemic, accurate estimates of epidemiologic parameters are required to help guide decision-making. We sought to estimate epidemiologic parameters for pandemic H1N1 influenza using data from initial reports of laboratory-confirmed cases. METHODS We obtained data on laboratory-confirmed cases of pandemic H1N1(More)
We develop and analyze a simple SIV epidemic model including susceptible, infected and perfectly vaccinated classes, with a generalized non-linear incidence rate subject only to a few general conditions. These conditions are satisfied by many models appearing in the literature. The detailed dynamics analysis of the model, using the Poincaré index theory,(More)
An SIRS epidemic model, with a generalized nonlinear incidence as a function of the number of infected individuals, is developed and analyzed. Extending previous work, it is assumed that the natural immunity acquired by infection is not permanent but wanes with time. The nonlinearity of the functional form of the incidence of infection, which is subject(More)
An epidemic model with a generalized non-linear incidence is extended to incorporate the effect of an infection-dependent removal strategy, which is defined as a function of the number of infected individuals. It is assumed that the removal rate decreases from a maximum capacity for removing infected individuals as their number increases. The existence and(More)
Given the danger of an unprecedented spread of the highly pathogenic avian influenza strain H5N1 in humans, and great challenges to the development of an effective influenza vaccine, antiviral drugs will probably play a pivotal role in combating a novel pandemic strain. A critical limitation to the use of these drugs is the evolution of highly transmissible(More)
BACKGROUND The emergence of neuraminidase inhibitor resistance has raised concerns about the prudent use of antiviral drugs in response to the next influenza pandemic. While resistant strains may initially emerge with compromised viral fitness, mutations that largely compensate for this impaired fitness can arise. Understanding the extent to which these(More)
Several models have rationalized the use of antiviral drugs as an early control measure for delaying the progression and limiting the size of outbreaks during an influenza pandemic. However, the strategy for use of these drugs is still under debate. We evaluated the impact of prophylaxis of healthcare workers (HCWs) through a mathematical model that(More)
OBJECTIVES During the first wave of the 2009 influenza pH1N1, disease burden was distributed in a geographically heterogeneous fashion. It was particularly high in some remote and isolated Canadian communities when compared with urban centres. We sought to estimate the transmissibility (the basic reproduction number) of pH1N1 strain in some remote and(More)
Despite the effectiveness of vaccines in dramatically decreasing the number of new infectious cases and severity of illnesses, imperfect vaccines may not completely prevent infection. This is because the immunity afforded by these vaccines is not complete and may wane with time, leading to resurgence and epidemic outbreaks notwithstanding high levels of(More)