Learn More
We developed a composite biphasic calcium phosphate (BCP) scaffold by coating a nanocomposite layer, consisting of hydroxyapatite (HA) nanoparticles and polycaprolactone (PCL), over the surface of BCP. The effects of HA particle size and shape in the coating layer on the mechanical and biological properties of the BCP scaffold were examined.(More)
UNLABELLED A critical strategy for tissue engineering is to provide the signals necessary for tissue regeneration by mimicking the tissue microenvironment. In this study, we mimicked (1) the bone chemical and the physical microenvironment by fabricating a three-dimensional nanocomposite scaffold composed of biphasic calcium phosphates (BCP) coated with a(More)
After the clinical insertion of a bone biomaterial, the surrounding osteoblasts would migrate and attach to the implant surface and foster a microenvironment that largely determines the differentiation fate of the comigrated mesenchymal stem cells. Whether the fostered microenvironment is suitable for osteogenic differentiation of mesenchymal stem cells is(More)
During the past two decades, research on ceramic scaffolds for bone regeneration has progressed rapidly; however, currently available porous scaffolds remain unsuitable for load-bearing applications. The key to success is to apply microstructural design strategies to develop ceramic scaffolds with mechanical properties approaching those of bone. Here we(More)
We here present the first successful report on combining nanostructured silk and poly(ε-caprolactone) (PCL) with a ceramic scaffold to produce a composite scaffold that is highly porous (porosity ∼85%, pore size ∼500 μm, ∼100% interconnectivity), strong and non-brittle with a surface that resembles extracellular matrix (ECM). The ECM-like surface was(More)
Biphasic calcium phosphates (BCP) scaffolds are widely used for bone tissue regeneration. However, brittleness, low mechanical properties and compromised bioactivities are, at present, their major disadvantages. In this study we coated the struts of a BCP scaffold with a nanocomposite layer consisting of bioactive glass nanoparticles (nBG) and(More)
This is the first reported study to prepare highly porous baghdadite (Ca₃ZrSi₂O₉) scaffolds with and without surface modification and investigate their ability to repair critical-sized bone defects in a rabbit radius under normal load. The modification was carried out to improve the mechanical properties of the baghdadite scaffolds (particularly to address(More)
Zirconium (Zr) is an element commonly used in dental and orthopedic implants either as zirconia (ZrO2) or in metal alloys. It can also be incorporated into calcium silicate-based ceramics. However, the effects of in vitro culture of human osteoblasts (HOBs) with soluble ionic forms of Zr have not been determined. In this study, primary culture of human(More)
Controlled delivery of biological cues through synthetic scaffolds to enhance the healing capacity of bone defects is yet to be realized clinically. The purpose of this study was development of a bioactive tissue-engineered scaffold providing the sustained delivery of an osteoinductive drug, dexamethasone disodium phosphate (DXP), encapsulated within(More)
Ceramic scaffolds such as biphasic calcium phosphate (BCP) have been widely studied and used for bone regeneration, but their brittleness and low mechanical strength are major drawbacks. We report the first systematic study on the effect of silk coating in improving the mechanical and biological properties of BCP scaffolds, including (1) optimization of the(More)