Sevil Duvarci

Learn More
We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are(More)
Brain activity in sleep plays a crucial role in memory consolidation, an offline process that determines the long-term strength of memory traces. Consolidation efficacy differs across individuals, but the brain activity dynamics underlying these differences remain unknown. Here, we studied how interindividual variability in fear memory consolidation relates(More)
Reactivation of consolidated memories returns them to a protein synthesis-dependent state. One interpretation of these findings is that the memory reconsolidates after use. Two alternative interpretations are that protein synthesis inhibition facilitates extinction and that postreactivation protein synthesis inhibition leads to an inability to retrieve the(More)
Memory consolidation is the process by which newly learned information is stabilized into long-term memory (LTM). Considerable evidence indicates that retrieval of a consolidated memory returns it to a labile state that requires it to be restabilized. Consolidation of new fear memories has been shown to require de novo RNA and protein synthesis in the(More)
A large body of pharmaco-behavioral data implicates the basolateral nucleus of the amygdala (BLA) in the facilitation of memory consolidation by emotions. Overall, this evidence suggests that stress hormones released during emotional arousal increase the activity of BLA neurons. In turn, this increased BLA activity would facilitate synaptic plasticity(More)
The central amygdala (Ce), particularly its medial sector (CeM), is the main output station of the amygdala for conditioned fear responses. However, there is uncertainty regarding the nature of CeM control over conditioned fear. The present study aimed to clarify this question using unit recordings in rats. Fear conditioning caused most CeM neurons to(More)
This review summarizes the latest developments in our understanding of amygdala networks that support classical fear conditioning, the experimental paradigm most commonly used to study learned fear in the laboratory. These recent advances have considerable translational significance as congruent findings from studies of fear learning in animals and humans(More)
The lateral nucleus (LA) is the input station of the amygdala for information about conditioned stimuli (CSs), whereas the medial sector of the central nucleus (CeM) is the output region that contributes most amygdala projections to brainstem fear effectors. However, there are no direct links between LA and CeM. As the main target of LA and with its strong(More)
While learning to fear stimuli that predict danger promotes survival, the inability to inhibit fear to inappropriate cues leads to a pernicious cycle of avoidance behaviors. Previous studies have revealed large inter-individual variations in fear responding with clinically anxious humans exhibiting a tendency to generalize learned fear to safe stimuli or(More)
Consolidation of new fear memories has been shown to require de novo RNA and protein synthesis in the lateral nucleus of amygdala (LA). Recently we have demonstrated that consolidated fear memories, when reactivated, return to a labile state which is sensitive to disruption by the protein synthesis inhibitor anisomycin. The specific molecular mechanisms(More)