hold. This double inequality is known in the literature as the Hermite–Hadamard inequality for convex functions. In recent years many authors established several inequalities connected to this fact. For recent results, refinements, counterparts, generalizations and new Hermite-Hadamard’stype inequalities see [1]–[18]. We recall that the notion of… (More)

New reverses of the Schwarz inequality in inner product spaces that incorporate the classical Klamkin-McLenaghan result for the case of positive n−tuples are given. Applications for Lebesgue integrals are also provided.

(b− a)M, for all x ∈ [a, b] . The constant 14 is best possible in the sense that it cannot be replaced by a smaller constant. In [2], the author has proved the following Ostrowski type inequality. Theorem 2. Let f : [a, b] → R be continuous on [a, b] with a > 0 and differentiable on (a, b) . Let p ∈ R\ {0} and assume that Kp (f ) := sup u∈(a,b) { u |f ′… (More)

Reverses of the Schwarz, triangle and Bessel inequalities in inner product spaces that improve some earlier results are pointed out. They are applied to obtain new Grüss type inequalities. Some natural integral inequalities are also stated.

Some additive reverses of the continuous triangle inequality for Bochner integral of vector-valued functions in Hilbert spaces are given. Applications for complex-valued functions are provided as well.