Learn More
We reconstruct the in vivo spatial distribution of linear and nonlinear elastic parameters in ten patients with benign (five) and malignant (five) tumors. The mechanical behavior of breast tissue is represented by a modified Veronda-Westmann model with one linear and one nonlinear elastic parameter. The spatial distribution of these elastic parameters is(More)
We establish the feasibility of imaging the linear and nonlinear elastic properties of soft tissue using ultrasound. We report results for breast tissue where it is conjectured that these properties may be used to discern malignant tumors from benign tumors. We consider and compare three different quantities that describe nonlinear behavior, including the(More)
We have recently developed and tested an efficient algorithm for solving the nonlinear inverse elasticity problem for a compressible hyperelastic material. The data for this problem are the quasi-static deformation fields within the solid measured at two distinct overall strain levels. The main ingredients of our algorithm are a gradient based quasi-Newton(More)
We analyzed heart wall motion and blood flow dynamics in chicken embryos using in vivo optical coherence tomography (OCT) imaging and computational fluid dynamics (CFD) embryo-specific modeling. We focused on the heart outflow tract (OFT) region of day 3 embryos, and compared normal (control) conditions to conditions after performing an OFT banding(More)
An abdominal aortic aneurysm is a pathological dilation of the abdominal aorta, which carries a high mortality rate if ruptured. The most commonly used surrogate marker of rupture risk is the maximal transverse diameter of the aneurysm. More recent studies suggest that wall stress from models of patient-specific aneurysm geometries extracted, for instance,(More)
  • 1