Seungkwan Hong

Learn More
Biofouling control by quorum sensing (QS) inhibition and the influence of membrane surface characteristics on biofilm formation and QS inhibition were investigated. Pseudomonas putida isolated from the bio-fouled reverse osmosis (RO) membranes in a real plant was used. Acylase was chosen as a model QS inhibitor. Bacteria on the membrane coupons were(More)
This paper describes the characterization and evaluation of various RO/NF membranes for the treatment of seasonally brackish surface water with high organic contents (TOC ≈21 mg/L). Twenty commercially available RO and NF membranes were initially evaluated by performing controlled bench-scale flat-sheet tests and surface characterization. Based on the(More)
The impact of membrane surface characteristics and NOM on membrane performance has been investigated for varying pretreatment and membranes in a field study. Surface charge, hydrophobicity and roughness varied significantly among the four membranes used in the study. The membranes were tested in parallel following two different pretreatment processes, an(More)
The impacts of distribution water quality changes caused by blending different source waters on lead release from corrosion loops containing small lead coupons were investigated in a pilot distribution study. The 1-year pilot study demonstrated that lead release to drinking water increased as chlorides increased and sulfates decreased. Silica and calcium(More)
Fertiliser-drawn forward osmosis (FDFO) desalination has been recently studied as one feasible application of forward osmosis (FO) for irrigation. In this study, the potential of membrane scaling in the FDFO process has been investigated during the desalination of brackish groundwater (BGW). While most fertilisers containing monovalent ions did not result(More)
Poly (aspartic acid sodium salt) (PAspNa) was evaluated for its potential as a novel draw solute in forward osmosis (FO). The inherent advantages of PAspNa, such as good water solubility, high osmotic pressure, and nontoxicity, were first examined through a series of physicochemical analyses and atomic-scale molecular dynamics simulations. Then, lab-scale(More)
A simple and rapid room-temperature aerosol deposition method was used to fabricate TiO(2) films for photokilling/photdegradation applications. TiO(2) particles were accelerated to supersonic speeds and fractured upon impacting a glass substrate to form a functional thin film, a process known as aerosol deposition. After deposition, the films were annealed(More)
We present a nonconventional membrane surface modification approach that utilizes surface topography to manipulate the tribology of foulant accumulation on water desalination membranes via imprinting of submicron titanium dioxide (TiO2) pillar patterns onto the molecularly structured, flat membrane surface. This versatile approach overcomes the constraint(More)
A disposable microbial sensor was designed, fabricated and tested for standard BOD (biochemical oxygen demand) measurements. A transparent cyclic olefin copolymer (COC) substrate was used for sensor fabrication. Standard lithographic procedures in addition to techniques like screen printing and electroplating were used to fabricate the sensor. A layer of a(More)
A series of reverse osmosis (RO) membrane filtration experiments was performed systematically in order to investigate the effects of various hydrodynamic and physicochemical operational parameters on a cake layer formation in colloidal and particulate suspensions. Bench-scale fouling experiments with a thin-film composite RO membrane were performed at(More)