Seunghwa Ryu

Learn More
Crumpled graphene films are widely used, for instance in electronics, energy storage, composites and biomedicine. Although it is known that the degree of crumpling affects graphene's properties and the performance of graphene-based devices and materials, the controlled folding and unfolding of crumpled graphene films has not been demonstrated. Here we(More)
The demand for flexible and wearable electronic devices is increasing due to their facile interaction with human body. Flexible, stretchable and wearable sensors can be easily mounted on clothing or directly attached onto the body. Especially, highly stretchable and sensitive strain sensors are needed for the human motion detection. Here, we report highly(More)
A unique size-dependent strain hardening mechanism, that achieves both high strength and ductility, is demonstrated for penta-twinned Ag nanowires (NWs) through a combined experimental-computational approach. Thin Ag NWs are found to deform via the surface nucleation of stacking fault decahedrons (SFDs) in multiple plastic zones distributed along the NW.(More)
Dislocation nucleation is essential to our understanding of plastic deformation, ductility, and mechanical strength of crystalline materials. Molecular dynamics simulation has played an important role in uncovering the fundamental mechanisms of dislocation nucleation, but its limited timescale remains a significant challenge for studying nucleation at(More)
Silver nanowires are promising components of flexible electronics such as interconnects and touch displays. Despite the expected cyclic loading in these applications, characterization of the cyclic mechanical behavior of chemically synthesized high-quality nanowires has not been reported. Here, we combine in situ TEM tensile tests and atomistic simulations(More)
Wearable strain sensors for human motion detection are being highlighted in various fields such as medical, entertainment and sports industry. In this paper, we propose a new type of stretchable strain sensor that can detect both tensile and compressive strains and can be fabricated by a very simple process. A silver nanoparticle (Ag NP) thin film patterned(More)
Since its discovery, the wetting transparency of graphene, the transmission of the substrate wetting property over graphene coating, has gained significant attention due to its versatility for potential applications. Yet, there have been debates on the interpretation and validity of the wetting transparency. Here, we present a theory taking two previously(More)
Ultra high strength V-graphene nanolayers were developed for the first time that was demonstrated to have an excellent radiation tolerance as revealed by the He(+) irradiation study. Radiation induced hardening, evaluated via nanopillar compressions before and after He(+) irradiation, is significantly reduced with the inclusion of graphene layers; the flow(More)
We report a novel concept of graphene transistors on Scotch tape for use in ubiquitous electronic systems. Unlike common plastic substrates such as polyimide and polyethylene terephthalate, the Scotch tape substrate is easily attached onto various objects such as banknotes, curved surfaces, and human skin, which implies potential applications wherein(More)
While the classical nucleation theory (CNT) is widely used to predict the rate of first-order phase transitions, its validity has been questioned due to discrepancies with experiments. We systematically test the individual components of CNT by computer simulations of the Ising models and confirm its fundamental assumptions under a wide range of conditions ((More)