Seunghwa Ryu

Learn More
Crumpled graphene films are widely used, for instance in electronics, energy storage, composites and biomedicine. Although it is known that the degree of crumpling affects graphene's properties and the performance of graphene-based devices and materials, the controlled folding and unfolding of crumpled graphene films has not been demonstrated. Here we(More)
A unique size-dependent strain hardening mechanism, that achieves both high strength and ductility, is demonstrated for penta-twinned Ag nanowires (NWs) through a combined experimental-computational approach. Thin Ag NWs are found to deform via the surface nucleation of stacking fault decahedrons (SFDs) in multiple plastic zones distributed along the NW.(More)
Silver nanowires are promising components of flexible electronics such as interconnects and touch displays. Despite the expected cyclic loading in these applications, characterization of the cyclic mechanical behavior of chemically synthesized high-quality nanowires has not been reported. Here, we combine in situ TEM tensile tests and atomistic simulations(More)
Since its discovery, the wetting transparency of graphene, the transmission of the substrate wetting property over graphene coating, has gained significant attention due to its versatility for potential applications. Yet, there have been debates on the interpretation and validity of the wetting transparency. Here, we present a theory taking two previously(More)
Phonons, which are collective excitations in a lattice of atoms or molecules, play a major role in determining various physical properties of condensed matter, such as thermal and electrical conductivities. In particular, phonons in graphene interact strongly with electrons; however, unlike in usual metals, these interactions between phonons and massless(More)
Creating new materials with novel properties through structural modification is the Holy Grail of materials science. The range of targetable structures for amplification of mechanical properties in metallic glasses would include types of atomic short range orders at the smallest scale through compositions or morphologies of phases in composites. Even though(More)
The wettability of graphene on various substrates has been intensively investigated for practical applications including surgical and medical tools, textiles, water harvesting, self-cleaning, oil spill removal and microfluidic devices. However, most previous studies have been limited to investigating the intrinsic and passive wettability of graphene and(More)
Conventional wetting theories on rough surfaces with Wenzel, Cassie-Baxter, and Penetrate modes suggest the possibility of tuning the contact angle by adjusting the surface texture. Despite decades of intensive study, there are still many experimental results that are not well understood because conventional wetting theory, which assumes an infinite droplet(More)
We report a flexible and wearable pressure sensor based on the giant piezocapacitive effect of a three-dimensional (3-D) microporous dielectric elastomer, which is capable of highly sensitive and stable pressure sensing over a large tactile pressure range. Due to the presence of micropores within the elastomeric dielectric layer, our piezocapacitive(More)