Learn More
Osmotic regulation of intracellular water during mitosis is poorly understood because methods for monitoring relevant cellular physical properties with sufficient precision have been limited. Here we use a suspended microchannel resonator to monitor the volume and density of single cells in suspension with a precision of 1% and 0.03%, respectively. We find(More)
The wide diversity of skeletal proportions in mammals is evident upon a survey of any natural history museum's collections and allows us to distinguish between species even when reduced to their calcified components. Similarly, each individual is comprised of a variety of bones of differing lengths. The largest contribution to the lengthening of a skeletal(More)
The coupling of the rate of cell growth to the rate of cell division determines cell size, a defining characteristic that is central to cell function and, ultimately, to tissue architecture. The physiology of size homeostasis has fascinated generations of biologists, but the mechanism, challenged by experimental limitations, remains largely unknown. In this(More)
Electrical activity may cause observable changes in a cell's structure in the absence of exogenous reporter molecules. In this work, we report a low-coherence interferometric microscopy technique that can detect an optical signal correlated with the membrane potential changes in individual mammalian cells without exogenous labels. By measuring(More)
We describe a heterodyne Mach-Zehnder interferometric microscope capable of quantitative phase imaging of biological samples with subnanometer sensitivity and frame rates up to 10 kHz. We use the microscope to image cultured neurons and measure nanometer-scale voltage-dependent motions in cells expressing the membrane motor protein prestin.
Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is(More)
  • 1