Learn More
CONSTANS (CO) regulates flowering time by positively regulating expression of two floral integrators, FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), in Arabidopsis (Arabidopsis thaliana). FT and SOC1 have been proposed to act in parallel pathways downstream of CO based on genetic analysis using weak ft alleles, since ft soc1 double(More)
Flowering is the primary trait affected by ambient temperature changes. Plant microRNAs (miRNAs) are small non-coding RNAs playing an important regulatory role in plant development. In this study, to elucidate the mechanism of flowering-time regulation by small RNAs, we identified six ambient temperature-responsive miRNAs (miR156, miR163, miR169, miR172,(More)
Positive selection of transgenic plants is essential during plant transformation. Thus, strong promoters are often used in selectable marker genes to ensure successful selection. Many plant transformation vectors, including pPZP family vectors, use the 35S promoter as a regulatory sequence for their selectable marker genes. We found that the 35S promoter(More)
MADS-box genes encode a family of transcription factors that regulate diverse developmental programs in plants. The present work shows the regulation of flowering time by AGL6 through control of the transcription of both a subset of the FLOWERING LOCUS C (FLC) family genes and FT, two key regulators of flowering time. The agl6-1D mutant, in which AGL6 was(More)
In order to understand the mechanisms underlying plant development, a necessary first step involves the elucidation of the functions of the genes, via the analysis of mutants that exhibit developmental defects. In this study, an activation tagging mutant library harboring 80,650 independent Arabidopsis transformants was generated in order to screen for(More)
The circadian clock in plants regulates many important physiological and biological processes, including leaf movement. We have used an imaging system to genetically screen Arabidopsis seedlings for altered leaf movement with the aim of identifying a circadian clock gene. A total of 285 genes were selected from publicly available microarrays that showed an(More)
MADS box genes are known to perform important functions in the development of various plant organs. Although the functions of many MADS box genes have previously been elucidated, the biological function of the type I MADS box genes remains poorly understood. In order to understand the function and regulation of the type I MADS box genes, we conducted(More)
  • 1