Seung-Il Moon

Learn More
Microgrids are a new concept for future energy distribution systems that enable renewable energy integration and improved energy management capability. Microgrids consist of multiple distributed generators (DGs) that are usually integrated via power electronic inverters. In order to enhance power quality and power distribution reliability, microgrids need(More)
This paper presents a voltage control method using multiple distributed generators (DGs) based on a multi-agent system framework. The output controller of each DG is represented as a DG agent, and each voltage-monitoring device is represented as a monitoring agent. These agents cooperate to accomplish voltage regulation through a coordinating agent or(More)
This paper presents a method to seek the PI controller parameters of a PMSG wind turbine to improve control performance. Since operating conditions vary with the wind speed, therefore the PI controller parameters should be determined as a function of the wind speed. Small-signal modeling of a PMSG WT is implemented to analyze the stability under various(More)
Mu-Gu Jeong 1, Seung-Il Moon 1 and Pyeong-Ik Hwang 2,* 1 Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; mugujeong88@gmail.com (M.-G.J.); moonsi@plaza.snu.ac.kr (S.-I.M.) 2 Korea Electric Power Research Institute (KEPRI), Korea Electric Power Company (KEPCO), 105 Munji-Ro, Yuseong-gu,(More)
This paper presents a new coherency identification method for dynamic reduction of a power system. To achieve dynamic reduction, coherency-based equivalence techniques divide generators into groups according to coherency, and then aggregate them. In order to minimize the changes in the dynamic response of the reduced equivalent system, coherency(More)
In this paper, a conservation voltage reduction (CVR) scheme is proposed for a distribution system with intermittent distributed generators (DGs), such as photovoltaics and wind turbines. The CVR is a scheme designed to reduce energy consumption by lowering the voltages supplied to customers. Therefore, an unexpected under-voltage violation can occur due to(More)
This paper is a summary of the development and demonstration of an optimization program, voltage VAR optimization (VVO), in the Korean Smart Distribution Management System (KSDMS). KSDMS was developed to address the lack of receptivity of distributed generators (DGs), standardization and compatibility, and manual failure recovery in the existing Korean(More)
This paper proposes a vector-controlled distributed generator (DG) model for a power flow based on a three-phase current injection method (TCIM). In order to represent the DG models in the power flow, steady-state phase current output equations are formulated. Using these equations, the TCIM power flow formulation is modified to include the DG models. In(More)