Seung Hwan Hong

Learn More
Neural stem cells are self-renewing cells capable of differentiating into all neural lineage cells in vivo and in vitro. In the present study, coordinated induction of midbrain dopaminergic phenotypes in an immortalized multipotent neural stem cell line can be achieved by both overexpression of nuclear receptor Nurr1, and fibroblast growth factor-8 (FGF-8),(More)
8-Chloro-cyclic AMP (8-Cl-cAMP), which is known to induce growth inhibition, apoptosis, and differentiation in various cancer cell lines, has been studied as a putative anticancer drug. However, the mechanism of anticancer activities of 8-Cl-cAMP has not been fully understood. Previously, we reported that the 8-Cl-cAMP-induced growth inhibition is mediated(More)
Chimeric genes coding for prepro region of yeast alpha-factor and anglerfish SRIF were expressed in rat GH3 cells to determine whether yeast signals could regulate hormone processing in mammalian cells. We report that nascent hybrid polypeptides were efficiently targeted to ER, where cleavage of signal peptides and core glycosylation occurred, and were(More)
The p104 protein inhibits cellular proliferation when overexpressed in NIH3T3 cells and has been shown to associate with p85α, Grb2, and PLCγ1. In order to isolate other proteins that interact with p104, yeast two-hybrid screening was performed. Rac1 was identified as a binding partner of p104 and the interaction between p104 and Rac1 was confirmed by(More)
We investigated whether yeast signals could regulate hormone processing in mammalian cells. Chmeric genes coding for the prepro region of yeast alpha-factor and the functional hormone region of anglerfish somatostatin was expressed in rat pituitary GH(3) cells. The nascent prepro-alpha-factor-somatostatin peptides disappeared from cells with a half-life of(More)
Rhp51, a RecA and Rad51 homologue of Schizosaccharomyces pombe, plays a pivotal role in homologous recombination and recombinational repair. It has a set of the well-conserved type A and type B ATP-binding motifs, which are highly conserved in all RecA homologues. In a previous study [Kim, Lee, Park, Park and Park (2001) Nucleic Acids Res. 29, 1724-1732],(More)
  • 1