Learn More
Although Smad2 and Smad3, critical transcriptional mediators of transforming growth factor-beta (TGF-beta) signaling, are supposed to play a role in the TGF-beta cytostatic program, it remains unclear whether TGF-beta delivers cytostatic signals through both Smads equally or through either differentially. Here, we report that TGF-beta cytostatic signals(More)
Adiponectin has recently received a great deal of attention due to its beneficial effects on insulin resistance and metabolic disorders. One of the mechanisms through which adiponectin exerts such effects involves an increase in fatty acid oxidation in muscle and liver. In the present study, we demonstrate that 5'-AMP-activated protein kinase (AMPK) and p38(More)
Neural stem cells are self-renewing cells capable of differentiating into all neural lineage cells in vivo and in vitro. In the present study, coordinated induction of midbrain dopaminergic phenotypes in an immortalized multipotent neural stem cell line can be achieved by both overexpression of nuclear receptor Nurr1, and fibroblast growth factor-8 (FGF-8),(More)
To date, two major apoptotic pathways, the death receptor and the mitochondrial pathway, have been well documented in mammalian cells. However, the involvement of these two apoptotic pathways, particularly the death receptor pathway, in transforming growth factor-beta 1 (TGF-beta 1)-induced apoptosis is not well understood. Herein, we report that apoptosis(More)
8-Chloro-cyclic AMP (8-Cl-cAMP), which is known to induce growth inhibition, apoptosis, and differentiation in various cancer cell lines, has been studied as a putative anticancer drug. However, the mechanism of anticancer activities of 8-Cl-cAMP has not been fully understood. Previously, we reported that the 8-Cl-cAMP-induced growth inhibition is mediated(More)
8-Cl-cAMP (8-chloro-cyclic AMP), which induces differentiation, growth inhibition and apoptosis in various cancer cells, has been investigated as a putative anti-cancer drug. Although we reported that 8-Cl-cAMP induces growth inhibition via p38 mitogen-activated protein kinase (MAPK) and a metabolite of 8-Cl-cAMP, 8-Cl-adenosine mediates this process, the(More)
8-Chloro-cyclic AMP (8-Cl-cAMP) is known to be most effective in inducing growth inhibition and differentiation of a number of cancer cells. Also, its cellular metabolite, 8-Cl-adenosine was shown to induce growth inhibition in a variety of cell lines. However, the signaling mechanism that governs the effects of 8-Cl-cAMP and/or 8-Cl-adenosine is still(More)
The luteinizing hormone/choriogonadotropin receptor is a seven-transmembrane receptor. Unlike most seven-transmembrane receptors, it is composed of two halves of equal size, the N-terminal extracellular exodomain and the C-terminal membrane-associated endodomain. The exodomain is exclusively responsible for high affinity hormone binding, whereas receptor(More)
The lutropin/choriogonadotropin receptor is a seven-helix transmembrane (TM) receptor. A unique feature of TM helices is the content of Pro, which generally is absent in alpha helices of globular proteins. Because Pro disrupts helices and introduces a approximately 26 degrees kink, it has been speculated that Pro plays a crucial role in the structure of TM(More)
As the LIF-induced Jak1/STAT3 pathway has been reported to play a crucial role in self-renewal of mESCs, we sought to determine if Jak2, which is also expressed in mESCs, might also be involved in the pathway. By employing an RNAi strategy, we established both Jak2 and Jak2/Tyk2 knockdown mESC clones. Both Jak2 and Jak2/Tyk2 knockdown clones maintained the(More)