Learn More
In this paper, we proposed a new type high sensitive volatile organic compounds (VOCs) gas sensor array that is based on the pulse width modulation technique. Four different types of solvatochromic dyes and two different types of polymers, were used to make the five different types of sensing membranes. These were deposited on the five side-polished optical(More)
We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC) gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG) provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone). To(More)
In this paper, we propose an Au-polypyrrole (Ppy) nanorod gas sensor for the detection of volatile organic compound (VOC) gases. This gas sensor operates on the principle of localized surface plasmon resonance (LSPR). The Au-Ppy nanorods used in this experiment were synthesized using an anodic aluminum oxide template by the electrochemical deposition(More)
In this paper, we propose interface engineering between cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots (QDs) as the emissive layer (EML) and ZnO nanocrystals (NCs) as the electron transport layer (ETL) for reducing the potential barrier in QDs based light-emitting diode (QLED). The n-type ZnO NCs were effective in confining charge to the QDs EML(More)
Since the 1980's, various types of implantable hearing aids using unique means for delivering acoustic power to the inner ear have been developed. Recently, implantable hearing aids that stimulate the round window by the middle ear transducer have received great attention because it reduces loading effect at the ossicular chain. In this study, we have(More)
The electrical characteristics of quantum dots (QDs) can vary depending on the surface modulation, which can change the luminance and efficiency of electroluminescent devices. Thus, understanding surface ligand is essential in improving the performance of QDs-based light-emitting diodes (LEDs). We analyzed the performance of QDs-based LEDs with respect to(More)
  • 1