Seung Ah Lee

Learn More
We report the implementation of a fully on-chip, lensless, sub-pixel resolving optofluidic microscope (SROFM). The device utilizes microfluidic flow to deliver specimens directly across a complementary metal oxide semiconductor (CMOS) sensor to generate a sequence of low-resolution (LR) projection images, where resolution is limited by the sensor's pixel(More)
Miniaturization of imaging systems can significantly benefit clinical diagnosis in challenging environments, where access to physicians and good equipment can be limited. Sub-pixel resolving optofluidic microscope (SROFM) offers high-resolution imaging in the form of an on-chip device, with the combination of microfluidics and inexpensive CMOS image(More)
We developed Trap it!, a human-biology interaction (HBI) medium encompassing a touchscreen interface, microscopy, and light projection. Users can interact with living cells by drawing on a touchscreen displaying the microscope view of the cells. These drawings are projected onto the microscopy field as light patterns, prompting observable movement in(More)
We demonstrate a compact portable imaging system for the detection of waterborne parasites in resource-limited settings. The previously demonstrated sub-pixel sweeping microscopy (SPSM) technique is a lens-less imaging scheme that can achieve high-resolution (<1 µm) bright-field imaging over a large field-of-view (5.7 mm×4.3 mm). A chip-scale microscope(More)
We present an interactive platform that enables human users to interface with microbiological living cells through a touch-screen, thereby generating a tangible interactive experience with the microscopic world that is hidden to most people. Euglena gracilis, single-celled phototactic microorganisms, are imaged and optically stimulated via a microscope(More)
We demonstrate a silo-filter (SF) complementary metal-oxide semiconductor (CMOS) image sensor for a chip-scale fluorescence microscope. The extruded pixel design with metal walls between neighboring pixels guides fluorescence emission through the thick absorptive filter to the photodiode of a pixel. Our prototype device achieves 13 μm resolution over a wide(More)
The fabrication of a novel microfluidic system, integrated with a set of laser-controlled microactuators on an ePetri on-chip microscopy platform, is presented in this paper. In the fully integrated microfluidic system, a set of novel thermally actuated paraffin-based microactuators, precisely controlled by programmed laser optics, was developed to regulate(More)
  • 1