Learn More
Tractography based on diffusion tensor imaging (DTI) allows visualization of white matter tracts. In this study, protocols to reconstruct eleven major white matter tracts are described. The protocols were refined by several iterations of intra- and inter-rater measurements and identification of sources of variability. Reproducibility of the established(More)
Two- and three-dimensional (3D) white matter atlases were created on the basis of high-spatial-resolution diffusion tensor magnetic resonance (MR) imaging and 3D tract reconstruction. The 3D trajectories of 17 prominent white matter tracts could be reconstructed and depicted. Tracts were superimposed on coregistered anatomic MR images to parcel the white(More)
Diffusion tensor imaging (DTI) is an exciting new MRI modality that can reveal detailed anatomy of the white matter. DTI also allows us to approximate the 3D trajectories of major white matter bundles. By combining the identified tract coordinates with various types of MR parameter maps, such as T2 and diffusion properties, we can perform tract-specific(More)
Brain anatomy is characterized by dramatic growth from the end of the second trimester through the neonatal stage. The characterization of normal axonal growth of the white matter tracts has not been well-documented to date and could provide important clues to understanding the extensive inhomogeneity of white matter injuries in cerebral palsy (CP)(More)
Recent advances in diffusion tensor imaging (DTI) have made it possible to reveal white matter anatomy and to detect neurological abnormalities in children. However, the clinical use of this technique is hampered by the lack of a normal standard of reference. The goal of this study was to initiate the establishment of a database of DTI images in children,(More)
While the majority of axonal organization is established by birth in mammalian brains, axonal wiring and pruning processes, as well as myelination, are known to extend to the postnatal periods, where environmental stimuli often play a major role. Normal axonal and myelin development of individual white matter tracts of human in this period is poorly(More)
Diffusion tensor imaging (DTI) can delineate white matter architecture based on fiber orientation. The purpose of this paper is to use the orientation information contained in DTI to study axonal organization of the brain both macroscopically and quantitatively. After performing gray/white matter segmentation using a fractional anisotropy threshold, the(More)
Morphology of the corpus callosum (CC) at the mid-sagittal level has been a target of extensive studies. However, the lack of internal structures and its polymorphism make it a challenging task to quantitatively analyze shape differences among subjects. In this paper, diffusion tensor Imaging (DTI) and tract tracing technique were applied to incorporate(More)
In the human brain, different regions of the cortex communicate via white matter tracts. Investigation of this connectivity is essential for understanding brain function. It has been shown that trajectories of white matter fiber bundles can be estimated based on orientational information that is obtained from diffusion tensor imaging (DTI). By extrapolating(More)
Diffusion tensor imaging with 1.8-mm isotropic resolution was performed to delineate structures of the brain stem. High-resolution single-shot imaging was achieved by the combination of a high-field magnet (3T) and the SENSitivity Encoding (or SENSE) parallel imaging technique. Various structures in the brain stem, such as the inferior olivary nuclei, deep(More)