Seth Winfree

Learn More
Salmonella enterica is an intracellular bacterial pathogen that resides and proliferates within a membrane-bound vacuole in epithelial cells of the gut and gallbladder. Although essential to disease, how Salmonella escapes from its intracellular niche and spreads to secondary cells within the same host, or to a new host, is not known. Here, we demonstrate(More)
Coxiella burnetii infects mononuclear phagocytes, where it directs biogenesis of a vacuolar niche termed the parasitophorous vacuole (PV). Owing to its lumenal pH (approximately 5) and fusion with endolysosomal vesicles, the PV is considered phagolysosome-like. However, the degradative properties of the mature PV are unknown, and there are conflicting(More)
Salmonella Typhimurium is a facultative intracellular pathogen that causes acute gastroenteritis in man. Intracellular Salmonella survive and replicate within a modified phagosome known as the Salmonella-containing vacuole (SCV). The onset of intracellular replication is accompanied by the appearance of membrane tubules, called Salmonella-induced filaments(More)
The Salmonella type III effector, SopB, is an inositol polyphosphate phosphatase that modulates host cell phospholipids at the plasma membrane and the nascent Salmonella-containing vacuole (SCV). Translocated SopB persists for many hours after infection and is ubiquitinated but the significance of this covalent modification has not been investigated. Here(More)
Salmonella enterica uses effector proteins translocated by a Type III Secretion System to invade epithelial cells. One of the invasion-associated effectors, SopB, is an inositol phosphatase that mediates sustained activation of the pro-survival kinase Akt in infected cells. Canonical activation of Akt involves membrane translocation and phosphorylation and(More)
The facultative intracellular pathogen, Salmonella enterica, triggers its own uptake into non-phagocytic epithelial cells. Invasion is dependent on a type 3 secretion system (T3SS), which delivers a cohort of effector proteins across the plasma membrane where they induce dynamic actin-driven ruffling of the membrane and ultimately, internalization of the(More)
The Gram-negative bacterium Salmonella enterica has developed an array of sophisticated tools to manipulate the host cell and establish an intracellular niche, for successful propagation as a facultative intracellular pathogen. While Salmonella exerts diverse effects on its host cell, only the cell biology of the classic "trigger"-mediated invasion process(More)
Salmonella enterica serovar Typhimurium invades and proliferates within epithelial cells. Intracellular bacteria replicate within a membrane bound vacuole known as the Salmonella containing vacuole. However, this bacterium can also replicate efficiently in the cytosol of epithelial cells and net intracellular growth is a product of both vacuolar and(More)
Yersinia pestis, the bacterial agent of plague, is transmitted by fleas. The bite of an infected flea deposits Y. pestis into the dermis and triggers recruitment of innate immune cells, including phagocytic PMNs. Y. pestis can subvert this PMN response and survive at the flea-bite site, disseminate, and persist in the host. Although its genome encodes a(More)
Preconditioning is a preventative approach, whereby minimized insults generate protection against subsequent larger exposures to the same or even different insults. In immune cells, endotoxin preconditioning downregulates the inflammatory response and yet, preserves the ability to contain infections. However, the protective mechanisms of preconditioning at(More)