Learn More
BACKGROUND Although several risk factors for cognitive decline have been identified, much less is known about factors that predict maintenance of cognitive function in advanced age. METHODS We studied 2,509 well-functioning black and white elders enrolled in a prospective study. Cognitive function was measured using the Modified Mini-Mental State(More)
Multisite phosphorylation of proteins has been proposed to transform a graded protein kinase signal into an ultrasensitive switch-like response. Although many multiphosphorylated targets have been identified, the dynamics and sequence of individual phosphorylation events within the multisite phosphorylation process have never been thoroughly studied. In(More)
The retinoblastoma (Rb) protein negatively regulates the G1-S transition by binding to the E2F transcription factors, until cyclin-dependent kinases phosphorylate Rb, causing E2F release. The Rb pocket domain is necessary for E2F binding, but the Rb C-terminal domain (RbC) is also required for growth suppression. Here we demonstrate a high-affinity(More)
The order and timing of cell-cycle events is controlled by changing substrate specificity and different activity thresholds of cyclin-dependent kinases (CDKs). However, it is not understood how a single protein kinase can trigger hundreds of switches in a sufficiently time-resolved fashion. We show that cyclin-Cdk1-Cks1-dependent phosphorylation of(More)
The phosphorylation state and corresponding activity of the retinoblastoma tumor suppressor protein (Rb) are modulated by a balance of kinase and phosphatase activities. Here we characterize the association of Rb with the catalytic subunit of protein phosphatase 1 (PP1c). A crystal structure identifies an enzyme docking site in the Rb C-terminal domain that(More)
The high sensitivity of the magnetic resonance properties of xenon to its local chemical environment and the large (129)Xe NMR signals attainable through optical pumping have motivated the use of xenon as a probe of macromolecular structure and dynamics. In the present work, we report evidence for nonspecific interactions between xenon and the exterior of(More)
The chemical shift of the (129)Xe NMR signal has been shown to be extremely sensitive to the local environment around the atom and has been used to follow processes such as ligand binding by bacterial periplasmic binding proteins. Here we show that the (129)Xe shift can sense more subtle changes: magnesium binding, BeF(3)(-) activation, and peptide binding(More)
Telomerase is required to maintain repetitive G-rich telomeric DNA sequences at chromosome ends. To do so, the telomerase reverse transcriptase (TERT) subunit reiteratively uses a small region of the integral telomerase RNA (TER) as a template. An essential feature of telomerase catalysis is the strict definition of the template boundary to determine the(More)
The MuvB complex recruits transcription factors to activate or repress genes with cell cycle-dependent expression patterns. MuvB contains the DNA-binding protein LIN54, which directs the complex to promoter cell cycle genes homology region (CHR) elements. Here we characterize the DNA-binding properties of LIN54 and describe the structural basis for(More)
The retinoblastoma tumor suppressor (Rb) pathway is mutated in most, if not all human tumors. In the G0/G1 phase, Rb and its family members p107 and p130 inhibit the E2F family of transcription factors. In response to mitogenic signals, Cyclin-dependent kinases (CDKs) phosphorylate Rb family members, which results in the disruption of complexes between Rb(More)
  • 1