Learn More
In the short-term heterotrophic soil respiration is strongly and positively related to temperature. In the long-term, its response to temperature is uncertain. One reason for this is because in field experiments increases in respiration due to warming are relatively short-lived. The explanations proposed for this ephemeral response include depletion of(More)
Extracellular enzymes are the proximate agents of organic matter decomposition and measures of these activities can be used as indicators of microbial nutrient demand. We conducted a global-scale meta-analysis of the seven-most widely measured soil enzyme activities, using data from 40 ecosystems. The activities of beta-1,4-glucosidase, cellobiohydrolase,(More)
© The Ecological Society of America www.frontiersinecology.org I an era of extensive environmental change, human activity – particularly the harvest of resources for food, fiber, and fuel – is substantially altering Earth’s climate and its element cycles (Vitousek et al. 1997; Figure 1). The need for energy to support economic growth has increased(More)
We examined the effect of chronic soil warming on microbial biomass, functional capacity, and community structure in soil samples collected from the Soil Warming Study located at the Harvard Forest Long-term Ecological Research (LTER) site. Twelve years of chronic soil warming at 5 C above the ambient temperature resulted in a significant reduction in(More)
Additions of (NH4)2SO4 to the soil inorganic nitrogen (N) pool were used to measure rates of N ̄ux from the mineral soil to surface-applied wheat straw decomposing in intact soil cores collected from a no-tillage (NT) ®eld. Half of the soil cores were treated with a fungicide to reduce fungal populations. Fungicide application signi®cantly reduced fungal(More)
Most plant diversity-function studies have been conducted in terrestrial ecosystems and have focused on plant productivity and nutrient uptake/retention, with a notable lack of attention paid to belowground processes (e.g., root dynamics, decomposition, trace gas fluxes). Here we present results from a mesocosm experiment in which we assessed how the(More)
The terrestrial biosphere sequesters up to a third of annual anthropogenic carbon dioxide emissions, offsetting a substantial portion of greenhouse gas forcing of the climate system. Although a number of factors are responsible for this terrestrial carbon sink, atmospheric nitrogen deposition contributes by enhancing tree productivity and promoting carbon(More)
Adjustment of ecosystem root respiration to warmer climatic conditions can alter the autotrophic portion of soil respiration and influence the amount of carbon available for biomass production. We examined 44 published values of annual forest root respiration and found an increase in ecosystem root respiration with increasing mean annual temperature (MAT),(More)
To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter-annual variations in soil respiration (Rs), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We(More)
Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test(More)