Sergy Yu Grebenshchikov

Learn More
Dynamical studies of the recombination of O and O2 to form ozone are reviewed. The focus is the intriguing isotope dependence of the recombination rate coefficient as observed by Mauersberger and coworkers in the last decade. The key quantity for understanding of this dependence appears to be the difference of zero-point energies of the two fragmentation(More)
The dependence of ozone recombination rate on the masses of oxygen isotopes is examined in the strong collision approximation by means of quantum mechanical calculations of resonance spectra of several rotating isotopomers. The measured DeltaZPE effect and its temperature dependence can be reconstructed from partial widths of narrow nonoverlapping(More)
The Huggins band of ozone is investigated by means of dynamics calculations using a new (diabatic) potential energy surface for the 3 (1)A'(1B2) state. The good overall agreement of the calculated spectrum of vibrational energies and intensities with the experimental spectrum, especially at low to intermediate excitation energies, is considered as evidence(More)
We review recent theoretical studies of the photodissociation of ozone in the wavelength region from 200 nm to 1100 nm comprising four major absorption bands: Hartley and Huggins (near ultraviolet), Chappuis (visible), and Wulf (near infrared). The quantum mechanical dynamics calculations use global potential energy surfaces obtained from new high-level(More)
Previously calculated resonance widths of the ground vibrational levels in the electronic states 1 (3)A" ((3)A(2)) and 1 (3)A' ((3)B(2)), which belong to the Wulf band system of ozone, are significantly smaller than observed experimentally. We demonstrate that predissociation is drastically enhanced by spin-orbit coupling between 1 (3)A"/X (1)A' and 1(More)
Three-dimensional diabatic potential energy surfaces for the lowest four electronic states of ozone with 1A' symmetry-termed X, A, B, and R-are constructed from electronic structure calculations. The diabatization is performed by reassigning corresponding energy points. Although approximate, these diabatic potential energy surfaces allow one to study the uv(More)
Ab initio quantum calculations have been carried out on the helium ionic trimer. The potential energy surface is accurately fitted, especially in the vicinity of the three equivalent minima. The spectrum of bound states for the zero angular momentum is computed and analyzed in detail. Energies and wave functions reveal several interesting features related(More)
New global diabatic potential energy surfaces of the electronic states 1B1 and 1A2 of ozone and the non-adiabatic coupling surface between them are constructed from electronic structure calculations. These surfaces are used to study the visible photodissociation in the Chappuis band by means of quantum mechanical calculations. The calculated absorption(More)
Spin-allowed production of O((1)D) in the near-UV photolysis of ozone is studied using ab initio potential energy surfaces and quantum mechanics. The O((1)D) quantum yield, reconstructed from the absolute cross sections for eight initial vibrational states in the ground electronic state, is shown to agree with the measurements in a broad range of photolysis(More)
The triplet channel in the photodissociation of ozone in the Hartley band, O3 + hv-->O(3P) + O2(3sigma), is investigated by means of a classical trajectory surface hopping method using ab initio diabatic potential energy surfaces for the B and the R states. Because of the strong recoil in the R state along the breaking O-O bond, O2(3sigma) is produced with(More)