Sergiy Zhuk

Learn More
In this paper we present Kalman duality principle for a class of linear Differential-Algebraic Equations (DAE) with arbitrary index and time-varying coefficients. We apply it to an ill-posed minimax control problem with DAE constraint and derive a corresponding dual control problem. It turns out that the dual problem is ill-posed as well and so classical(More)
— In this paper we construct an infinite horizon minimax state observer for a linear stationary differential-algebraic equation (DAE) with uncertain but bounded input and noisy output. We do not assume regularity or existence of a (unique) solution for any initial state of the DAE. Our approach is based on a generalization of Kalman's duality principle. In(More)
In this paper, we propose a new framework for macroscopic traffic state estimation based on the Fourier-Galerkin projection method and minimax state estimation approach. We assign a Fourier-Galerkin reduced model to a partial differential equation describing a macroscopic model of traffic flow. Taking into account a priori estimates for the projection(More)
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt età la diffusion(More)
A reduced minimax state estimation approach is proposed for high-dimensional models. It is based on the reduction of the ordinary differential equation with high state space dimension to the low-dimensional Differential-Algebraic Equation (DAE) and on the subsequent application of the minimax state estimation to the resulting DAE. The DAE is composed of a(More)