Sergio Saia

Learn More
Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N) fixation under conditions of water shortage. A field experiment was(More)
Long-term experiments could provide valuable information to determine the effects of an agronomic practice on agro-ecosystem productivity and stability. This study evaluated the long-term (18-year) impact of different tillage systems on faba bean (Vicia faba L.) productivity, including weed and broomrape incidence, and N2 fixation. The experiment was(More)
Arbuscular mycorrhizal fungi (AMF) have a major impact on plant nutrition, defence against pathogens, a plant's reaction to stressful environments, soil fertility, and a plant's relationship with other microorganisms. Such effects imply a broad reprogramming of the plant's metabolic activity. However, little information is available regarding the role of(More)
In a field experiment conducted in a Mediterranean area of inner Sicily, durum wheat was inoculated with plant growth-promoting rhizobacteria (PGPR), with arbuscular mycorrhizal fungi (AMF), or with both to evaluate their effects on nutrient uptake, plant growth, and the expression of key transporter genes involved in nitrogen (N) and phosphorus (P) uptake.(More)
Choosing genotypes with a high capacity for taking up nitrogen (N) from the soil and the ability to efficiently compete with weeds for this nutrient is essential to increasing the sustainability of cropping systems that are less dependent on auxiliary inputs. This research aimed to verify whether differences exist in N uptake and N fertilizer recovery(More)
To evaluate the productivity and N2 fixation of a range of Mediterranean forage legume species as well as their ability to be grown in mixture with a forage grass, and to verify whether N transfer occurs from the legume to the non-legume component of the mixtures and, if so, to what extent this process is affected by legume species. Seven legume species(More)
Although sulla (Hedysarum coronarium L.) has many interesting features that could support the production of biofuels (e.g., a high yield and soluble sugar content, N-fixation capacity, low input requirements for its cultivation), no study has assessed the possibility of its use for that purpose. Our objective was to evaluate the potential value for energy(More)
St. John’s Wort (Hypericum perforatum) is a perennial herb able to produce water-soluble active ingredients (a.i.), mostly in flowers, with a wide range of medicinal and biotechnological uses. However, information about the ability of arbuscular mycorrhizal fungi (AMF) to affect its biomass accumulation, flower production, and concentration of a.i. under(More)
  • 1