Sergio Petrera

Learn More
Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above 6 x 10(19) electron volts and the positions of active galactic nuclei (AGN) lying within approximately 75 megaparsecs. We rejected the hypothesis of an isotropic distribution of these(More)
Many galactic and extragalactic astrophysical sources are currently considered promising candidates as high-energy neutrino emitters. Astrophysical neutrinos can be detected as upward-going muons produced in charged-current interactions with the medium surrounding the detector. The expected neutrino fluxes from various models start to dominate on the(More)
The final analysis of atmospheric neutrino events collected with theMACROdetector is presented. Three different classes of events, generated by neutrinos in different energy ranges, are studied looking at rates, angular distributions and estimated energies. The results are consistent for all the subsamples and indicate a flux deficit that depends on energy(More)
The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth's crust. Tau leptons from nu(tau) charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January 2004 and(More)
Using data collected by the MACRO experiment from 1989 to the end of its operations in 2000, we have studied in the underground muon flux the shadowing effects due to both the Moon and the Sun. We have observed the shadow cast by the Moon at its apparent position with a significance of 6.5 σ. The Moon shadowing effect has been used to verify the pointing(More)
The energy spectrum of cosmic rays above 2.5 x 10;{18} eV, derived from 20,000 events recorded at the Pierre Auger Observatory, is described. The spectral index gamma of the particle flux, J proportional, variantE;{-gamma}, at energies between 4 x 10;{18} eV and 4 x 10;{19} eV is 2.69+/-0.02(stat)+/-0.06(syst), steepening to 4.2+/-0.4(stat)+/-0.06(syst) at(More)
We describe the measurement of the depth of maximum, X{max}, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10;{18} eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was(More)
High-energy gamma-ray astronomy is now a well-established Ðeld, and several sources have been discovered in the region from a few gigaÈelectron volts up to several teraÈelectron volts. If sources involving hadronic processes exist, the production of photons would be accompanied by neutrinos too. Other possible neutrino sources could be related to the(More)
We present the final results obtained by the MACRO experiment in the search for GUT magnetic monopoles in the penetrating cosmic radiation, for the range 4×10 −5 < β < 1. Several searches with all the MACRO sub-detectors (i.e. scintillation counters, limited streamer tubes and nuclear track detectors) were performed, both in stand alone and combined ways.(More)
Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (E_{CM}=110-170  TeV), whose longitudinal development and lateral distribution(More)