Sergio Oscar Verduzco-Flores

Learn More
Many natural systems are organized as networks, in which the nodes (be they cells, individuals or populations) interact in a time-dependent fashion. The dynamic behavior of these networks depends on how these nodes are connected, which can be understood in terms of an adjacency matrix and connection strengths. The object of our study is to relate(More)
Neurons in the cortex exhibit a number of patterns that correlate with working memory. Specifically, averaged across trials of working memory tasks, neurons exhibit different firing rate patterns during the delay of those tasks. These patterns include: 1) persistent fixed-frequency elevated rates above baseline, 2) elevated rates that decay throughout the(More)
Recurrent networks of cortico-cortical connections have been implicated as the substrate of working memory persistent activity, and patterned sequenced representation as needed in cognitive function. We examine the pathological behavior which may result from specific changes in the normal parameters or architecture in a biologically plausible computational(More)
Temporal patterns of activity which repeat above chance level in the brains of vertebrates and in the mammalian neocortex have been reported experimentally. This temporal structure is thought to subserve functions such as movement, speech, and generation of rhythms. Several studies aim to explain how particular sequences of activity are learned, stored, and(More)
Persistent states are believed to be the correlate for short-term or working memory. Using a previously derived model for working memory, we show that disruption of the lateral inhibition can lead to a variety of pathological states. These states are analogs of reflex or pattern-sensitive epilepsy. Simulations, numerical bifurcation analysis, and fast-slow(More)
Simple-spike synchrony between Purkinje cells projecting to a common neuron in the deep cerebellar nucleus is emerging as an important factor in the encoding of output information from cerebellar cortex. A phenomenon known as stochastic synchronization happens when uncoupled oscillators synchronize due to correlated inputs. Stochastic synchronization is a(More)
A1 Functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mitsuo Kawato F1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-compartment models of(More)
We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and(More)
The temporal structure of neuronal activity plays a fundamental role in brain function. In addition to the compelling structure found in birdsong, repeating temporal sequences have been experimentally observed in the mammalian neocortex, both at the levels of local field potentials and individual neurons. The mechanisms underlying the learning and(More)
  • 1